
EPTCS 112

Proceedings of the

1st International Workshop on

Strategic Reasoning
Rome, Italy, March 16-17, 2013

Edited by: Fabio Mogavero, Aniello Murano and Moshe Y. Vardi

Published: 1st March 2013
DOI: 10.4204/EPTCS.112
ISSN: 2075-2180
Open Publishing Association

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. i–ii, doi:10.4204/EPTCS.112.0

c©
This work is licensed under the
Creative Commons Attribution License.

Preface

This volume contains the proceedings of the First International Workshop on Strategic Reasoning
2013 (SR 2013), held in Rome (Italy), March 16-17, 2013.

The SR workshop aims to bring together researchers, possibly with different backgrounds, working
on various aspects of strategic reasoning in computer science, both from a theoretical and a practical
point of view.

Strategic reasoning is one of the most active research area in multi-agent system domain. The lit-
erature in this field is extensive and provides a plethora of logics for modeling strategic reasoning.
Theoretical results are now being used in many exciting domains, including software tools for in-
formation system security, robot teams with sophisticatedadaptive strategies, and automatic players
capable of beating expert human adversary, just to cite a few. All these examples share the challenge
of developing novel theories and tools for agent-based reasoning that takes into account the behavior
of adversaries.

This year SR has hosted four invited talks:
• Breaking the O(n*m) Barrier for Büchi Games and Probabilistic Verification

Krishnendu Chatterjee (IST Austria)

• Model Checking Systems against Epistemic Specifications
Alessio R. Lomuscio (Imperial College London)

• Looking at Mean-Payoff and Total-Payoff through Windows
Jean-Francois Raskin (Université Libre de Bruxelles)

• Bad Equilibria (and what to do about them)
Michael Wooldridge (University of Oxford)

The program committee also selected 13 papers among the 23 contributions submitted. Contributions
were selected according to quality and relevance to the topics of the workshop.

We would like to acknowledge the people and institutions, which contributed to the success of this
edition of SR. We thank the organizers of the European Joint Conferences on Theory and Practice
of Software (ETAPS 2013) for giving us the opportunity to host SR 2013. Many thanks go to all
the Program Committee members and the additional reviewersfor their excellent work, the fruitful
discussions and the active participation during the reviewing process. We also thank Giuseppe Perelli
and Loredana Sorrentino for their great work as members of the Organizing Committee. We would
like to acknowledge the EasyChair organization for supporting all tasks related to the selection of
contributions, and both EPTCS and arXiv for hosting the proceedings. We gratefully acknowledge
the financial support to SR 2013 by ExCAPE - an NSF-funded Expeditions Project in Computer Aug-
mented Program Engineering. Finally, we acknowledge the patronage from the Department of Elec-
trical Engineering and Information Technology of the Università degli Studi di Napoli Federico II.

Rome, March 2013
Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi

ii

Program Co-Chair

• Fabio Mogavero, Università degli Studi di Napoli FedericoII, Napoli, Italy

• Aniello Murano, Università degli Studi di Napoli FedericoII, Napoli, Italy

• Moshe Y. Vardi, Rice University, Huston, Texas, USA

Program Committee

• ThomasÅgotnes, University of Bergen, Bergen, Norway

• Dietmar Berwanger, CNRS de Cachan, Cachan, France

• Valentin Goranko, Technical University of Denmark, Lyngby, Denmark

• Joseph Y. Halpern, Cornell University, Ithaca, New York, USA

• Wojtek Jamroga, University of Luxembourg, Luxembourg City, Luxembourg

• Orna Kupferman, Hebrew University, Jerusalem, Israel

• Nicolas Markey, CNRS de Cachan, Cachan, France

• Fabio Mogavero, Università degli Studi di Napoli FedericoII, Napoli, Italy

• Aniello Murano, Università degli Studi di Napoli FedericoII, Napoli, Italy

• Ramaswamy Ramanujam, Institute of Mathematical Sciences,Chennai, India

• Wolfgang Thomas, RWTH Aachen, Aachen, Germany

• Moshe Y. Vardi, Rice University, Huston, Texas, USA

Organizing Committee

• Fabio Mogavero, Università degli Studi di Napoli FedericoII, Napoli, Italy

• Aniello Murano, Università degli Studi di Napoli FedericoII, Napoli, Italy

• Giuseppe Perelli, Università degli Studi di Napoli Federico II, Napoli, Italy

• Loredana Sorrentino, Università degli Studi di Napoli Federico II, Napoli, Italy

Additional Referees

Benjamin Aminof, Massimo Benerecetti, Thomas Brihaye, Sjur Kristoffer Dyrkolbotn, Marco Faella,
Lukasz Kaiser, Prateek Karandikar, Martin Lange, Erik Parmann, Madhusudan Parthasarathy, Soumya
Paul, Truls Pedersen, Giuseppe Perelli, Nir Piterman, Luigi Sauro, Olivier Serre, Nicolas Troquard,
Yi Wang.

iii

Table of Contents

Preface .. i

Table of Contents .. iii

Invited Presentation: Breaking the O(n*m) Barrier for Büchi Games and Probabilistic Verification 1
Krishnendu Chatterjee

Invited Presentation: Model Checking Systems against Epistemic Specifications 3
Alessio R. Lomuscio

Invited Presentation: Looking at Mean-Payoff and Total-Payoff through Windows 5
Jean-Francois Raskin

Invited Presentation: Bad Equilibria (and what to do about them) 7
Michael Wooldridge

Functional Dependence in Strategic Games (extended abstract) . 9
Kristine Harjes and Pavel Naumov

Restricted Manipulation in Iterative Voting: Convergenceand Condorcet Efficiency. 17
Umberto Grandi, Andrea Loreggia, Francesca Rossi, KristenBrent Venable and Toby Walsh

Infinite games with uncertain moves .. 25
Nicholas Asher and Soumya Paul

How to Be Both Rich and Happy: Combining Quantitative and Qualitative Strategic Reasoning
about Multi-Player Games (Extended Abstract) 33

Nils Bulling and Valentin Goranko

Lossy Channel Games under Incomplete Information 43
Rayna Dimitrova and Bernd Finkbeiner

Strategic Analysis of Trust Models for User-Centric Networks . 53
Marta Kwiatkowska, David Parker and Aistis Simaitis

Concurrent Game Structures with Roles 61
Truls Pedersen, Sjur Dyrkolbotn, Piotr Kaźmierczak and Erik Parmann

Reasoning about Strategies under Partial Observability and Fairness Constraints 71
Simon Busard, Charles Pecheur, Hongyang Qu and Franco Raimondi

iv

Reducing Validity in Epistemic ATL to Validity in EpistemicCTL . 81
Dimitar P. Guelev

Towards an Updatable Strategy Logic .. 91
Christophe Chareton, Julien Brunel and David Chemouil

A rewriting point of view on strategies 99
Hélène Kirchner

Synthesizing Structured Reactive Programs via Deterministic Tree Automata . 107
Benedikt Brütsch

The Complexity of Synthesizing Uniform Strategies 115
Bastien Maubert, Sophie Pinchinat and Laura Bozzelli

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 1–1, doi:10.4204/EPTCS.112.1

c© K. Chatterjee
This work is licensed under the
Creative Commons Attribution License.

Breaking the O(n ·m) Barrier for B üchi Games and
Probabilistic Verification

Invited Talk

Krishnendu Chatterjee
IST Austria

Turn-based Büchi games and maximal end-component decomposition are two classic graph theoretic
problems that are core algorithmic problems in synthesis and verification of probabilistic systems.
Moreover, many other problems on graph games reduce to them,and as an example we will first
describe how analysis of reachability objectives in concurrent games reduces to Büchi games. We
will present recent results that break the O(n*m) barrier for Büchi games, and show how the same
techniques break the barrier for maximal end-component decomposition.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 3–3, doi:10.4204/EPTCS.112.2

c© A.R. Lomuscio
This work is licensed under the
Creative Commons Attribution License.

Model Checking Systems against Epistemic Specifications
Invited Talk

Alessio R. Lomuscio
Imperial College London

Twenty years after the publication of the influential article ”Model checking vs theorem proving:
a manifesto” by Halpern and Vardi, the area of model checkingsystems against agent-based spec-
ifications is flourishing. In this talk I will present some of the approaches I have developed with
collaborators. I will begin by discussing BDD-based model checking for epistemic logic combined
with ATL operators and then move to abstraction techniques including symmetry reduction. I will
then highlight how, in our experience, bounded model checking can also successfully be used in this
context, particularly in combination with BDDs, and how synthesis problems can be formulated and
solved in an epistemic setting. The talk will include examples in the context of security protocols and
a brief demo of MCMAS, an open-source model checker implementing some of these techniques.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 5–5, doi:10.4204/EPTCS.112.3

c© J.-F. Raskin
This work is licensed under the
Creative Commons Attribution License.

Looking at Mean-Payoff and Total-Payoff through Windows
Invited Talk

Jean-Francois Raskin
Université Libre de Bruxelles

We consider two-player games played on weighted directed graphs with mean-payoff and total-
payoff objectives, which are two classical quantitative objectives. While for single dimensional
objectives all results for mean-payoff and total-payoff coincide, we show that in contrast to multi-
dimensional mean-payoff games that are known to be coNP-complete, multi-dimensional total-payoff
games are undecidable. We introduce conservative approximations of these objectives, where the
payoff is considered over a local finite window sliding alonga play, instead of the whole play. For
single dimension, we show that (i) if the window size is polynomial, then the problem can be solved
in polynomial time, and (ii) the existence of a bounded window can be decided in NP and in coNP,
and is at least as hard as solving mean-payoff games. For multiple dimensions, we show that (i)
the problem with fixed window size is ExpTime-complete, and (ii) there is no primitive-recursive
algorithm to decide the existence of a bounded window.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 7–7, doi:10.4204/EPTCS.112.4

c© M. Wooldridge
This work is licensed under the
Creative Commons Attribution License.

Bad Equilibria (and what to do about them)
Invited Talk

Michael Wooldridge
University of Oxford

In economics, an equilibrium is a steady-state situation, which obtains because no participant has
any rational incentive to deviate from it. Equilibrium concepts are arguably the most important and
widely used analytical weapons in the game theory arsenal. The concept of Nash equilibrium in
particular has found a huge range of applications, in areas as diverse and seemingly unrelated as
biology and moral philosophy. However, there remain fundamental problems associated with Nash
equilibria and their application. First, there may be multiple Nash equilibria, in which case, how
should we choose between them? Second, some equilibria may be undesirable, in which case, how
can we avoid them? In this presentation, I will introduce work that we have done addressing these
problems from a computational/AI perspective. Assuming noprior knowledge of game theory or
economic solution concepts, I will discuss various ways in which we can try to engineer a game
so that desirable equilibria result, or else engineer out undesirable equilibria. In particular, I will
consider thee possible devices for the management of equilibria: taxation, communication, and law-
making. While all of these devices are regularly used in human societies, in this work, we consider
these as computational problems.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 9–15, doi:10.4204/EPTCS.112.5

c© Kristine Harjes and Pavel Naumov
This work is licensed under the
Creative Commons Attribution License.

Functional Dependence in Strategic Games
(extended abstract)

Kristine Harjes and Pavel Naumov

Department of Mathematics and Computer Science
McDaniel College, Westminster, Maryland, USA

{keh013,pnaumov}@mcdaniel.edu

The paper studies properties of functional dependencies between strategies of players in Nash equi-
libria of multi-player strategic games. The main focus is on the properties of functional dependencies
in the context of a fixed dependency graph for pay-off functions. A logical system describing prop-
erties of functional dependence for any given graph is proposed and is proven to be complete.

1 Introduction

Functional Dependence. In this paper we study dependency between players’ strategies in Nash equi-
libria. For example, the coordination game described by Table 1 has two Nash equilibria: (a1,b1) and
(a2,b2). Knowing the strategy of player a in a Nash equilibrium of this game, one can predict the strategy
of player b. We say that player a functionally determines player b and denote this by aBb.

b1 b2

a1 1,1 0,0
a2 0,0 1,1

Table 1: Coordination Game

Note that in the case of the coordination game, we also have bBa.
However, for the game described by Table 2 statement aBb is true, but
bBa is false.

The main focus of this paper is functional dependence in multi-
player games. For example, consider a “parity” game with three play-
ers a, b, c. Each of the players picks 0 or 1, and all players are rewarded
if the sum of all three numbers is even. This game has four different

Nash equilibria: (0,0,0), (0,1,1), (1,0,1), and (1,1,0). It is easy to see that knowledge of any two
players’ strategies in a Nash equilibrium reveals the third. Thus, using our notation, for example a,bBc.
At the same time, ¬(aB c).

b1 b2

a1 1,1 0,0
a2 0,0 1,1
a3 1,1 0,0

Table 2: Strategic Game

As another example, consider a game between three players in
which each player picks 0 or 1 and all players are rewarded if they
have chosen the same strategy. This game has only two Nash equilib-
ria: (0,0,0) and (1,1,1). Thus, knowledge of the strategy of player a
in a Nash equilibrium reveals the strategies of the two other players.
We write this as aBb,c.

Functional dependence as a relation has been studied previously,
especially in the context of database theory. Armstrong [1] presented the following sound and complete
axiomatization of this relation:

1. Reflexivity: ABB, if B⊆ A,

2. Augmentation: ABB→ A,CBB,C,

10 Functional Dependence in Strategic Games

3. Transitivity: ABB→ (BBC→ ABC),

where here and everywhere below A,B denotes the union of sets A and B. The above axioms are known
in database literature as Armstrong’s axioms [5]. Beeri, Fagin, and Howard [2] suggested a variation of
Armstrong’s axioms that describe properties of multi-valued dependence.

Dependency Graphs. As a side result, we will show that the logical system formed by the Armstrong
axioms is sound and complete with respect to the strategic game semantics. Our main result, however, is
a sound and complete axiomatic system for the relation B in games with a given dependency graph.

Dependency graphs [7, 8, 4, 3] put restrictions on the pay-off functions that can be used in the game.
For example, dependency graph Γ1 depicted in Figure 1, specifies that the pay-off function of player a
only can depend on the strategy of player b in addition to the strategy of player a himself. The pay-off
function for player b can only depend on the strategies of players a and c in addition to the strategy of
player b himself, etc.

a b c d

Figure 1: Dependency Graph Γ1

An example of a game over graph Γ1 is a game between play-
ers a, b, c, and d in which these players choose real numbers as
their strategies. The pay-off function of players a and d is the
constant 0. Player b is rewarded if his value is equal to the mean

of the values of players a and c. Player c is rewarded if his value is equal to the mean of the values of
players b and d. Thus, Nash equilibria of this game are all quadruples (a,b,c,d) such that 2b = a+ c
and 2c = b+d. Hence, in this game a,bB c,d and a,cBb,d, but ¬(aBb).

Note that although the statement a,bBc,d is true for the game described above, it is not true for many
other games with the same dependency graph Γ1. In this paper we study properties of functional depen-
dence that are common to all games with the same dependency graph. An example of such statement for
the graph Γ1, as we will show in Proposition 1, is aBd→ b,cBd.

a b c d

Figure 2: Dependency Graph Γ2

Informally, this property is true for any game over graph Γ1
because any dependencies between players a and d must be es-
tablished through players b and c. This intuitive approach, how-
ever, does not always lead to the right conclusion. For example,
in graph Γ2 depicted in Figure 2, players b and c also separate
players a and d. Thus, according to the same intuition, the state-
ment aBd→ b,cBd must also be true for any game over graph
Γ2. This, however, is not true. Consider, for example, a game in
which all four players have three strategies: rock, paper, and scissors. The pay-off function of players a
and d is the constant 0. If a and d pick the same strategy, then neither b nor c is paid. If players a and d
pick different strategies, then players b and c are paid according to the rules of the standard rock-paper-
scissors game. In this game Nash equilibrium is only possible if a and d pick the same strategy. Hence,
aB d. At the same time, in any such equilibria b and c can have any possible combination of values.
Thus, ¬(b,cBd). Therefore, the statement aBd→ b,cBd is not true for this game.

a b c

Figure 3: Dependency Graph Γ3

As our final example, consider the graph Γ3 depicted in Fig-
ure 3. We will show that aB c→ bB c is not true for at least one
game over graph Γ3. Indeed, consider the game in which players
a,b, and c use real numbers as possible strategies. Players a and c

have a constant pay-off of 0. The pay-off of the player b is equal to 0 if players a and c choose the same
real number. Otherwise, it is equal to the number chosen by the player b himself. Note that in any Nash
equilibrium of this game, the strategies of players a and c are equal. Therefore, aB c, but ¬(bB c).

The main result of this paper is a sound and complete axiomatization of all properties of functional

Kristine Harjes and Pavel Naumov 11

dependence for any given dependency graph. This result is closely related to work by More and Naumov
on functional dependence of secrets over hypergraphs [9]. However, the logical system presented in this
paper is significantly different from theirs. A similar relation of “rational” functional dependence without
any connection to dependency graphs has been axiomatized by Naumov and Nicholls [10].

The counterexample that we have constructed for the game in Figure 3 significantly relies on the fact
that player b has infinitely many strategies. However, in this paper we show completeness with respect
to the semantics of finite games, making the result stronger.

2 Syntax and Semantics

The graphs that we consider in this paper contain no loops, multiple edges, or directed edges.

Definition 1 For any set of vertices U of a graph (V,E), border B(U) is the set

{v ∈U | (v,w) ∈ E for some w ∈V \U}.

A cut (U,W) of a graph (V,E) is a partition U tW of the set V . For any vertex v in a graph, by Ad j(v)
we mean the set of all vertices adjacent to v. By Ad j+(v) we mean the set Ad j(v)∪{v}.

Definition 2 For any graph Γ = (V,E), by Φ(Γ) we mean the minimal set of formulas such that (i)
⊥ ∈Φ(Γ), (ii) ABB ∈Φ(Γ) for each A⊆V and B⊆V , (iii) φ → ψ ∈Φ(Γ) for each φ ,ψ ∈Φ(Γ).

Definition 3 By game over graph Γ = (V,E) we mean any strategic game G = (V,{Sv}v∈V ,{uv}v∈V)
such that (i) The finite set of players in the game is the set of vertices V , (ii) The finite set of strategies
Sv of any player v is an arbitrary set, (iii) The pay-off function uv of any player v only depends on the
strategies of the players in Ad j+(v).

By NE(G) we denote the set of all Nash equilibria in the game G. The next definition is the core definition
of this paper. The second item in the list below gives a precise meaning of the functional dependence
predicate ABB.

Definition 4 For any game G over graph Γ and any φ ∈Φ(Γ), we define binary relation G� φ as follows
(i) G 2 ⊥, (ii) G � ABB if s =A t implies s =B t for each s, t ∈ NE(G), (iii) G � ψ1→ ψ2 if G 2 ψ1 or
G � ψ2, where here and everywhere below 〈sv〉v∈V =X 〈tv〉v∈V means that sx = tx for each x ∈ X.

3 Axioms

The following is the set of axioms of our logical system. It consists of the original Armstrong axioms
and an additional Contiguity axiom that captures properties of functional dependence specific to a given
graph Γ.

1. Reflexivity: ABB, where B⊆ A

2. Augmentation: ABB→ A,CBB,C

3. Transitivity: ABB→ (BBC→ ABC)

4. Contiguity: A,BBC→B(U),B(W),BBC, where (U,W) is a cut of the graph such that A ⊆U
and C ⊆W .

12 Functional Dependence in Strategic Games

Note that the Contiguity axiom, unlike the Gateway axiom [9], effectively requires “double layer” divider
B(U),B(W) between sets A and C. This is because in our setting values are assigned to the vertices and
not to the edges of the graph.

We write `Γ φ if φ ∈Φ(Γ) is provable from the combination of the axioms above and propositional
tautologies in the language Φ(Γ) using the Modus Ponens inference rule. We write X `Γ φ if φ is
provable using the additional set of axioms X . We often omit the parameter Γ when its value is clear
from the context.

Lemma 1 ` ABC→ A,BBC.

Proof. Assume ABC. By the Reflexivity axiom, A,BBA. Thus, by the Transitivity axiom, A,BBC. �

4 Examples

In this section we give examples of proofs in our formal system. The soundness and the completeness of
this system will be shown in the appendix.

Proposition 1 `Γ1 aBd→ b,cBd, where Γ1 is the graph depicted in Figure 1.

Proof. Consider cut (U,W) of the graph Γ1 such that U = {a,b} and W = {c,d}. Thus, B(U) = {b}
and B(W) = {c}. Therefore, by the Contiguity axiom, aBd→ b,cBd. �

Proposition 2 `Γ1 a,cBd→ (d,bBa→ b,cBa,d), where Γ1 is the graph depicted in Figure 1.

Proof. Assume that a,cBd and d,bBa. Consider cut (U,W) of the graph Γ1 such that U = {a,b} and
W = {c,d}. Thus, B(U) = {b} and B(W) = {c}. Therefore, by the Contiguity axiom with A = {a},
B = {c}, and C = {d}, a,cBd→ b,cBd. Thus,

b,cBd. (1)

by the first assumption. Similarly, using the second assumption, b,cB a. Hence, by the Augmentation
axiom,

b,cBa,b,c. (2)

Thus, from statement (1) by the Augmentation axiom, a,b,cBa,d. Finally, using statement (2) and the
Transitivity axiom, b,cBa,d. �

Proposition 3 `Γ4 a,cB e→ b,c,dB e, where Γ4 is the graph depicted in Figure 4.

a b c d e

Figure 4: Dependency Graph Γ4

Proof. Consider cut (U,W) of the graph Γ4
such that U = {a,b,c} and W = {d,e}. Thus,
B(U) = {b,c} and B(W) = {d}. There-
fore, a,c B e → b,c,d B e by the Contigu-
ity axiom with A = {a}, B = {c}, and C =
{e}. �

Kristine Harjes and Pavel Naumov 13

Proposition 4 `Γ5 aBb→ (bB c→ (cBa→ d,e, f Ba,b,c)), where Γ5 is depicted in Figure 5.

Proof. Assume aB b, bB c, and cB a. Consider cut (U,W) of the graph Γ5 such that U = {c, f} and
W = {a,b,d,e}. Thus, B(U) = { f} and B(W) = {d,e}. Therefore, by the Contiguity axiom with
A = {c}, B =∅, and C = {a}, cBa→ d,e, f Ba. Hence, d,e, f Ba by the third assumption. Similarly,
one can show d,e, f B b, and d,e, f B c. By applying the Augmentation axiom to the last three state-
ments, d,e, f Ba,d,e, f , and a,d,e, f Ba,b,d,e, f , and a,b,d,e, f Ba,b,c. Therefore, d,e, f Ba,b,c by
the Transitivity axiom applied twice. �

c

f

d e

ba

Figure 5: Dependency Graph Γ5

Proposition 2 and Proposition 4 are special cases of a more
general principle. We will say that a subset of vertices is sparse if
the shortest path between any two vertices in this subset contains
at least three edges. The general principle states that if W is a
sparse subset of vertices in the graph (V,E) and each vertex w ∈
W is functionally determined by the set V \ {w}, then the subset
V \W functionally determines the subset W :

∧

w∈W

((V \{w}))Bw→ (V \W)BW.

For example, the set {a,d} in the graph Γ1 depicted in Figure 1
is sparse. Due to the general principle, a,b,cB d → (d,c,bB a→ b,cB a,d). Thus, by Lemma 1,
a,cBd→ (d,bBa→ b,cBa,d), which is the statement of Proposition 2. In the case of Proposition 4,
the sparse set is {a,b,c}. The proof of the general principle is similar to the proof of Proposition 4.

5 Soundness

In this section, we prove soundness of our logical system by proving soundness of each of our four
axioms. The proof of completeness can be found in [6].

Lemma 2 (reflexivity) G � ABB for each game G over a graph Γ = (V,E) and each B⊆ A⊆V .

Proof. For any s, t ∈ NE(G), if s =A t, then s =B t because A⊆ B. �

Lemma 3 (augmentation) If G � ABB, then G � A,CBB,C for each game G over a graph Γ = (V,E)
and each A,B,C ⊆V .

Proof. Suppose that G � ABB and consider any s, t ∈ NE(G) such that s =A,C t. We will show that
s =B,C t. Indeed, s =A,C t implies that s =A t and s =C t. Thus, s =B t by the assumption G � ABB.
Therefore, s =B,C t. �

Lemma 4 (transitivity) If G � ABB and G � BBC, then G � ABC for each game G over a graph
Γ = (V,E) and each A,B,C ⊆V .

Proof. Suppose that G � ABB and G � BBC. Consider any s, t ∈ NE(G) such that s =A t. We will
show that s=C t. Indeed, s=B t due to the first assumption. Hence, by the second assumption, s=C t. �

14 Functional Dependence in Strategic Games

Lemma 5 (contiguity) If G � A,BBC, then G �B(S),B(T),BBC, for each game G = (V,E) over a
graph Γ, each cut (U,W) of Γ, and each A⊆U, B⊆V , and C ⊆W.

Proof. Suppose that G � A,BBC. Consider any s = 〈sv〉v∈V ∈ NE(G) and t = 〈tv〉v∈V ∈ NE(G) such
that s =B(U),B(W),B t. We will prove that s =C t. Indeed, consider strategy profile e = 〈ev〉v∈V such that

ev =

{
sv if v ∈U ,
tv if v ∈W .

We will first prove that e ∈ NE(G). Assuming the opposite, let v ∈ V be a player in the game G that
can increase his pay-off by changing strategy in profile e. Without loss of generality, let v ∈U . Then,
e =Ad j(v)∪{v} s. Thus, player v can also increase his pay-off by changing strategy in profile s, which is a
contradiction with the choice of s ∈ NE(G).

Note that e =U,B s and e =W,B t. Thus, e =A,B s and e =C s. Hence, e =C s by the assumption
G � A,BBC. Therefore, s =C e =C t. �

6 Conclusion

In this paper, we have described a sound and complete logical system for functional dependence in
strategic games over a fixed dependency graph. The dependency graph puts restrictions on the type of
pay-off functions that can be used in the game. If no such restrictions are imposed, then the logical
system for functional dependence in strategic games is just the set of original Armstrong axioms. This
statement follows from our results since the absence of restrictions corresponds to the case of a complete
(in the graph theory sense) dependency graph. In the case of a complete graph, the Contiguity axiom
follows from the Armstrong axioms because for any cut (U,W), the set B(U)∪B(W) is the set of all
vertices in the graph.

References
[1] W. W. Armstrong (1974): Dependency structures of data base relationships. In: Information processing 74

(Proc. IFIP Congress, Stockholm, 1974), North-Holland, Amsterdam, pp. 580–583.
[2] Catriel Beeri, Ronald Fagin & John H. Howard (1977): A complete axiomatization for functional and

multivalued dependencies in database relations. In: SIGMOD ’77: Proceedings of the 1977 ACM
SIGMOD international conference on Management of data, ACM, New York, NY, USA, pp. 47–61,
doi:10.1145/509404.509414.

[3] Edith Elkind, Leslie Ann Goldberg & Paul W. Goldberg (2006): Nash Equilibria in Graphical Games on
Trees Revisited. Electronic Colloquium on Computational Complexity (ECCC) (005).

[4] Edith Elkind, Leslie Ann Goldberg & Paul W. Goldberg (2007): Computing good Nash equilibria in graph-
ical games. In Jeffrey K. MacKie-Mason, David C. Parkes & Paul Resnick, editors: ACM Conference on
Electronic Commerce, ACM, pp. 162–171, doi:10.1145/1250910.1250935.

[5] Hector Garcia-Molina, Jeffrey Ullman & Jennifer Widom (2009): Database Systems: The Complete Book,
second edition. Prentice-Hall.

[6] Kristine Harjes & Pavel Naumov (2013): Functional Dependence in Strategic Games. CoRR
arXiv:1302.0447 [math.LO].

[7] Michael J. Kearns, Michael L. Littman & Satinder P. Singh (2001): Graphical Models for Game Theory. In
Jack S. Breese & Daphne Koller, editors: UAI, Morgan Kaufmann, pp. 253–260.

Kristine Harjes and Pavel Naumov 15

[8] Michael L. Littman, Michael J. Kearns & Satinder P. Singh (2001): An Efficient, Exact Algorithm for Solving
Tree-Structured Graphical Games. In Thomas G. Dietterich, Suzanna Becker & Zoubin Ghahramani, editors:
NIPS, MIT Press, pp. 817–823.

[9] Sara Miner More & Pavel Naumov (2011): The Functional Dependence Relation on Hypergraphs of Secrets.
In João Leite, Paolo Torroni, Thomas Ågotnes, Guido Boella & Leon van der Torre, editors: CLIMA, Lecture
Notes in Computer Science 6814, Springer, pp. 29–40, doi:10.1007/978-3-642-22359-4 3.

[10] Pavel Naumov & Brittany Nicholls (2012): Rationally Functional Dependence. In: 10th Conference on
Logic and the Foundations of Game and Decision Theory (LOFT).

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 17–24, doi:10.4204/EPTCS.112.6

This work is licensed under the
Creative Commons Attribution License.

Restricted Manipulation in Iterative Voting:
Convergence and Condorcet Efficiency

Umberto Grandi
University of Padova

umberto.uni@gmail.com

Andrea Loreggia
University of Padova

andrea.loreggia@gmail.com

Francesca Rossi
University of Padova

frossi@math.unipd.it

Kristen Brent Venable
Tulane University and IHMC

kvenabl@tulane.edu

Toby Walsh
NICTA and UNSW

toby.walsh@nicta.com.au

In collective decision making, where a voting rule is used to take a collective decision
among a group of agents, manipulation by one or more agents is usually considered nega-
tive behavior to be avoided, or at least to be made computationally difficult for the agents
to perform. However, there are scenarios in which a restricted form of manipulation can
instead be beneficial. In this paper we consider the iterative version of several voting
rules, where at each step one agent is allowed to manipulate by modifying his ballot
according to a set of restricted manipulation moves which are computationally easy and
require little information to be performed. We prove convergence of iterative voting rules
when restricted manipulation is allowed, and we present experiments showing that most
iterative voting rules have a higher Condorcet efficiency than their non-iterative version.

1 Introduction
In multi-agent systems, often agents need to take a collective decision. A voting rule can be used to
decide which decision to take, mapping the agents’ preferences over the possible candidate decisions into
a winning decision for the collection of agents. In this kind of scenarios, it seems desirable that agents
do not have any incentive to manipulate, that is, to misreport their preferences in order to influence the
result of the voting rule in their favor.

Manipulation is indeed usually seen as bad behavior from agents, to be avoided or at least to be made
computationally difficult to accomplish. While we know that every voting rule is manipulable when no
domain restriction is imposed on the agents’ preferences (such as single-peakedness), we can try to make
sure that a voting rule is computationally difficult to manipulate for single agents or coalitions of agents.

In this paper we consider a different setting, in which instead manipulation is allowed in a fair way.
As in the usual case, we start with agents expressing their preferences over a set of candidates and the
voting rule selecting the current winner. However, this is just a temporary winner, since at this point a
single agent may decide to manipulate, that is, to change her preference if by doing so the result changes
in her favor. The process repeats with a new agent manipulating until we eventually reach a convergence
state, i.e., a profile where no single agent can get a better result by manipulating. We call such a process
iterative voting. In this scenario, manipulation can be seen as a way to achieve consensus, to give every
agent a chance to vote strategically (a sort of fairness), and to account for inter-agent influence over time.

A practical example of this process is Doodle,1 a very popular on-line system to select a time slot for
a meeting by considering the preferences of the participants. In Doodle, each participant can approve as

1http://doodle.com/

18 Restricted Manipulation in Iterative Voting: Convergence and Condorcet Efficiency

many time slots as she wants, and the winning time slot is the one with the largest number of approvals.
At any point, each participant can modify her vote in order to get a better result, and this can go on for
several steps. Depending on the voting rule, on the tie-breaking rule (to be used when there are several
tied winners), and on the possible manipulation moves (that is, how agents are allowed to change their
preferences in a single step), we may get convergence or not. We will say that the iterative version of a
voting rule converges if it gets to a stable state no matter the initial profile.

Iterative voting has been the subject of numerous publications in recent years. Previous work has
focused on iterating the plurality rule [6] and on the problem of convergence for several voting rules [5].
Lev and Rosenschein [5] showed that, if we allow agents to manipulate in any way they want (i.e., to
provide their best response to the current profile), then the iterative version of most voting rules do
not converge. Therefore, an interesting problem is to seek restrictions on the manipulation moves to
guarantee convergence of the associated iterative rule. Restricted manipulation moves are good not
only for convergence, but also because they can be easier to accomplish for the manipulating agent. In
fact, contrarily to what we aim for in classical voting scenarios, here we do not want manipulation to
be computationally difficult to achieve. It is actually desirable that the manipulation move be easy to
compute while not requiring too much information to be computed.

An example of a restricted manipulation move is the one for agents called k-pragmatists by Reijngoud
and Endriss [8]: a k-pragmatist just needs to know the top k candidates in the collective candidate order,
and will move the most preferred of those candidates to the top position of her preference. To accomplish
this move, a k-pragmatist needs very little information and it is computationally easy to perform the
move. This move assures convergence with a number of voting rules.

In this paper we introduce two restricted manipulation moves within the scenario of iterative voting
and we analyze some of their theoretical and practical properties. Both manipulation moves we con-
sider are polynomial to compute and require little information to be used. We show that convergence is
guaranteed under both moves, except for STV for which we only have experimental evidence of conver-
gence. Moreover, we show that if a voting rule satisfies some axiomatic properties, such as Condorcet
consistency or unanimity, then its iterative version will also satisfy the same properties as well. For vot-
ing rules that are not Condorcet consistent, we tested experimentally whether their Condorcet efficiency
(that is, the probability to elect the Condorcet winner) improves by adopting the iterative version. Our
experiments show that the Condorcet efficiency improves when restricted manipulation moves are used.

The paper is organized as follows. In Section 2 we introduce the basic definitions of iterative voting
and we define two new restricted manipulation moves. Section 3 contains theoretical results on conver-
gence and preservation of axiomatic properties, and in Section 4 we present our experimental evaluation
of restricted iterative voting. Section 5 contains our conclusions and directions for future research.

2 Background Notions
In this section we recall the basic notions of voting theory that we shall use in this paper, we present the
setting of iterative voting, and we define a number of restrictions on the manipulation moves that agents
can perform.

2.1 Voting Rules
Let X be a finite set of m candidates and I be a finite set of n individuals. We assume individuals have
preferences pi over candidates in X in the form of strict linear orders, i.e., transitive, anti-symmetric
and complete binary relations. Individuals express their preferences in form of a ballot bi (e.g., the top
candidate, a set of approved candidates, or the full linear order) and we call the choice of a ballot for each
individual a profile b = (b1, . . . ,bn). In this paper, we assume that individuals submit as a ballot for the

U. Grandi, A. Loreggia, F. Rossi, K. B. Venable and T. Walsh 19

election their full linear order, and we thus use the two notions of ballot and preference interchangeably.
A (non-resolute) voting rule F associates with every profile b = (b1, . . . ,bn) a non-empty subset of

winning candidates F(b) ∈ 2X \ /0. There is a wide collection of voting rules that have been defined in
the literature [2] and here we focus on the following ones:

Positional scoring rules (PSR): Let (s1, . . . ,sm) be a scoring vector such that s1 ≥ ·· · ≥ sm and s1 > sm.
If a voter ranks candidate c at j-th position in her ballot, this gives s j points to the candidate. The
candidates with the highest score win. We focus on four particular PSR: Plurality with scoring
vector (1,0, . . . ,0), veto with vector (1, . . . ,1,0), 2-approval with vector (1,1,0, . . . ,0), 3-approval
with vector (1,1,1,0, . . . ,0), and Borda with vector (m−1,m−2, . . . ,0).

Copeland: The score of candidate c is the number of pairwise comparisons she wins (i.e., contests
between c and another candidate a such that there is a majority of voters preferring c to a) minus
the number of pairwise comparisons she loses. The candidates with the highest score win.

Maximin: The score of a candidate c is the smallest number of voters preferring it in any pairwise
comparison. The candidates with the highest score win.

Single Transferable Vote (STV): At the first round the candidate that is ranked first by the fewest number
of voters gets eliminated (ties are broken following a predetermined order of candidates). Votes
initially given to the eliminated candidate are then transferred to the candidate that comes imme-
diately after in the individual preferences. This process is iterated until one alternative is ranked
first by a majority of voters.

All rules considered thus far are non-resolute, i.e., they associate a set of winning candidates with every
profile of preferences. To eliminate ties in the outcome we assume that the set X of candidates is ordered
by ≺X , and in case of ties the alternative ranked highest by ≺X is chosen as the unique outcome.

2.2 Iterative Voting
A classical problem studied in voting theory is that of manipulation: do individuals have incentive to
misreport their preferences, in order to force a candidate they prefer as winner of the election? The
Gibbard-Satterthwaite Theorem [4, 9] showed that under natural conditions all voting rules can be ma-
nipulated. Following this finding, a considerable amount of work has been spent on devising conditions
to avoid manipulation, e.g., in form of restrictive conditions on individual preferences, or in form of
computational barriers that make the calculation of manipulation strategies too hard for agents [1, 3].

In this paper, we take a different stance on manipulation: we consider the fact that individuals are
allowed to change their preferences as a positive aspect of the voting process, that may eventually lead
to a better result after a sufficient number of steps. Thus, we consider a sequence of repeated elections in
which at each step one of the individuals is allowed to manipulate, i.e., to modify her ballot in order to
change the outcome of the election in her favor. The iteration process starts at b0 (which we shall refer
to as the truthful profile) and continues to b1, . . . ,bk. At each step only one individual τ(k) is allowed to
manipulate, following a turn function τ (e.g., τ follows the order in which individuals are given), while
all other individual ballots remain unchanged.

The setting of iterative voting was first introduced and studied by [6] for the case of the plurality rule,
and expanded by [5]. In their work, the authors describe the iterated election process as a voting game, in
which convergence of the iterative process corresponds to reaching a Nash equilibria of the game. They
show that convergence is rarely guaranteed with most voting rules under consideration: for instance, the
iterative version of PSRs and Maximin do not always converge, even with deterministic tie-breaking (i.e.,
not randomized). On the other hand, plurality always converges with any tie-breaking rule, as well as
veto with linear tie-breaking.

20 Restricted Manipulation in Iterative Voting: Convergence and Condorcet Efficiency

2.3 Restricted Manipulation Moves
The convergence of the iterated version of a voting rule can be obtained by restricting the set of manip-
ulation strategies available to the agents. We now list a number of restrictions that have been studied in
the literature, and we add two new definitions to this list. Let bk be the current profile at step k, b0 be the
initial (truthful) profile, and F be a voting rule. Assume that τ(k) = i.

Best response (no restriction): the manipulator i changes her full ballot by selecting the linear order
which results in the best possible outcome for her truthful preference b0

i [5].

k-pragmatist: the manipulator i moves to the top of her reported ballot the most preferred candidate
following b0

i among those that scored in the top k positions [8].

M1: the manipulator i moves to the top of her reported ballot the second-best candidate in b0
i , unless

the current winner w = F(bk) is already her best or second-best candidate in b0
i .

M2: the manipulator i moves to the top of her reported ballot the most preferred candidate in b0
i which

is above w = F(bk) in bk
i , among those that can become the new winner of the election.

Different restrictions on manipulation moves induce different iterated versions of a voting rule:

Definition 1. Let F be a voting rule and M a restriction on manipulation moves. FM,τ associates with
every profile b the outcome of the iteration of F using turn function τ and manipulation moves in M if
this converges, and ↑ otherwise.

In the sequel we shall omit the superscript τ from the notation when this will be clear from the context.
Observe that if M is the set of best responses, then FM = F∗.

Restrictions on the set of manipulation moves can be evaluated following three parameters: (i) the
convergence of the iterated voting rule associated with the restriction, (ii) the information to be pro-
vided to voters for computing their strategy2, and (iii) the computational complexity of computing the
manipulation move at every step. An ideal restriction always guarantees convergence, requires as little
information as possible, and is computationally easy to compute.

As we pointed out at the end of the previous section, convergence is not guaranteed in most cases
if the set of manipulation moves is not restricted (i.e., using best responses). Reijngoud and Endriss [8]
show convergence for PSRs using the k-pragmatist restriction, and we shall investigate convergence
results for M1 and M2 in the following section. Let us move to the other two parameters: on the one
hand, M1 requires as little information as possible to be computed, i.e., only the winner of the current
election, and is also very easy to compute. On the other hand, computing the best response requires
an agent to have full knowledge of a profile, and may be computationally very hard to compute [1].
The k-pragmatist restriction has good properties: it is easy to compute, and the information required to
compute the best strategy is just the set of the candidates ranked in the top k positions. M2 also requires
little information for the agents: the scoring vector of candidates in case of scoring rules, the majority
graph for Copeland and Maximin. In the case of STV the full profile is instead required. Moreover, from
the point of view of the manipulator, M2 is computationally easy (i.e., polynomial) to perform.

3 Convergence and Axiomatic Properties
In this section we prove that the iterated version of PSR, Maximin and Copeland converge when using our
two new restrictions on the manipulation moves. We also analyze, for a number of axiomatic properties,
the behavior of the iterated version of a voting rule.

2This parameter is called poll information function by Reijngoud and Endriss [8].

U. Grandi, A. Loreggia, F. Rossi, K. B. Venable and T. Walsh 21

Theorem 1. FM1 converges for every voting rule F.

Proof. The proof of this statement is straightforward from our definitions. The iteration process starts at
the truthful profile b0, and each agent is then allowed to switch the top candidate with the one in second
position. Thus, the iteration process stops after at most n steps.

Theorem 2. FM2 converges if F is a PSR, the Copeland rule or the Maximin rule.

Proof. The winner of an election using a PSR, Copeland or Maximin is defined as the candidate max-
imizing a certain score (or with maximal score and higher rank in the tie-breaking order). Since the
maximal score of a candidate is bounded, it is sufficient to show that the score of the winner increases
at every iteration step (or, in case the score remains constant, that the position of the winner in the
tie-breaking order increases) to show that the iterative process converges.

Let us start with PSR. Recall that the score of a candidate c under PSR is ∑i si where si is the score
given by the position of c in ballot bi. Using M2, the manipulator moves to the top a candidate which
lies above the current winner c. Thus, the position – and hence the score – of c remains unchanged, and
the new winner must have a strictly higher score (or a better position in the tie-breaking order) than the
previous one. The case of Copeland and Maximin can be solved in a similar fashion: it is sufficient to
observe that the relative position of the current winner c with all other candidates (and thus also its score)
remains unchanged when ballots are manipulated using M2. Thus, the Copeland score and the Maximin
score of a new winner must by higher than that of c (or the new winner must be placed higher in the
tie-breaking order).

While currently we do not have a proof of convergence for STV, we observed experimentally that its
iteration always terminates on profiles with a Condorcet winner when a suitable turn function described
in the following section is used.

Voting rules are traditionally studied using axiomatic properties, and we can inquire whether these
properties extend from a voting rule to its iterated version. We refer to the literature for an explanation
of these properties [10]. Let us call FM

t the iterated version of voting rule F after t iteration steps. We
say that a restricted manipulation move M preserves a given axiom if whenever a voting rule F satisfies
the axiom then also FM

t does satisfy it for all t.

Theorem 3. M1 and M2 preserve unanimity.

Proof. Assume that the iteration process starts at a unanimous profile b in which candidate c is at top
position of all individual preferences. If F is unanimous, then F(b) = c, and no individual has incentives
to manipulate either using M1 or M2. Thus, iteration stops at step 1 and FM1

t (b) = c and FM2
t (b) = c,

satisfying the axiom of unanimity.

Theorem 4. M1 and M2 preserve Condorcet consistency.

Proof. Let c be the Condorcet winner of a profile b. If F is Condorcet-consistent then F(b) = c. As
previously observed, when individuals manipulate using either M1 or M2 the relative position of the
current winner with all other candidates does not change, since the manipulation only involves candidates
that lie above the current winner in the individual preferences. Thus c remains the Condorcet winner in
all iteration steps bk. Since FM1

k (b) = F(bk) and F is Condorcet-consistent, we have that FM1
k (b) = c

and thus FM1
k is Condorcet consistent. Similarly for M2.

22 Restricted Manipulation in Iterative Voting: Convergence and Condorcet Efficiency

Other properties that transfer from a voting rule to its iterative version are neutrality and anonymity
(supposing the turn function satisfies an appropriate version of neutrality and anonymity). The Pareto-
condition does not transfer to the iterated version, as can be shown by adapting an example by Reijngoud
and Endriss [8].

4 Experimental Evaluation of Restricted Manipulation Moves
In this section we evaluate our two restricted manipulation moves M1 and M2 under one important
aspect: we measure whether the restricted iterative version of a voting rule has a higher Condorcet
efficiency than the initial voting rule, i.e., whether the probability that a Condorcet winner (if it exists)
gets elected is higher for the iterative rather than non-iterative rule. We show that in most cases the
Condorcet efficiency of a voting rule increases if iterated manipulation is allowed using M1 or M2
(except for Copeland and Maximin which are already Condorcet-consistent rules). We also compare our
findings with the k-pragmatist restriction for k = 2,3.

Our results are obtained using a program implemented in Java ver.1.6.0. The software generates
profiles with uniform distribution (i.e., impartial culture assumption). The impartial culture assumption
has received criticism in recent years [7]. However, it remains the most common assumption used in
social choice theory, and thus represents the obvious starting point for our empirical evaluation. Our test
set contains 10.000 profiles with Condorcet winner. We set the number of candidates to 5 and varied the
number of voters from 20 to 100.

The turn function used in our experiments associates to each voter i a dissatisfaction index di(k),
which increases of one point for each iteration step in which the individual has an incentive to manipulate
but is not allowed to do so by the turn function. At iteration step k the individual that has the highest
dissatisfaction index is allowed to move (in the first step, and in case of ties, the turn follows the initial
order in which voters are given). We were always able to compute the outcome of the iterative voting
rules after convergence in reasonable time.

4.1 Condorcet efficiency of restricted iterative voting
Figure 1 compares, for several voting rules, the Condorcet efficiency of the respective iterative version
using restricted manipulation moves M1, M2, 2-pragmatist and 3-pragmatist. The number of voters is
set to n = 50.

0

10

20

30

40

50

60

70

80

90

100

Plurality Borda STV 2Approval 3Approval Veto

C
o

n
d

o
rc

et
 E

ff
ic

ie
n

cy
 (

%
)

Non-Iterative version M1 M2 2-pragmatists 3-pragmatists

Figure 1: Iterated Condorcet efficiency.

Except for the case of the Borda rule, the Condorcet efficiency of the iterated version of a voting rule

U. Grandi, A. Loreggia, F. Rossi, K. B. Venable and T. Walsh 23

improves significantly with respect to the non-iterated version, and the growth is significantly higher
when voters manipulate the election using M2 rather than M1. A plausible reason for this behavior is the
difference in range of candidates that can be helped by the two manipulation moves. While M1 may help
a Condorcet winner being elected only if it was ranked second by some of the individuals, M2 may help
a candidate even if it was ranked lower. Let us also stress that while the increase in Condorcet efficiency
using M1 is minimal, it is still surprising that such a simple move can result in a better performance than
the original version of the voting rule. The 2-pragmatist and 3-pragmatist restriction perform quite well
with the plurality rule, while for all other rules our restriction M2 results in a better performance.

In the case of Plurality a significant increase can be obtained with both M1 and M2. In Figure 2 we
show the trend in Condorcet efficiency when voters vary from n = 20 to n = 100. It can be observed that
the increase is higher for smaller numbers of voters and stabilizes at around n = 60. The same behavior
can be observed in Figure 3 for the case of STV.

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

C
o

n
d

o
rc

et
 E

ff
ic

ie
n

cy
 (

%
)

Number of voters

Plurality Plurality M1 Plurality M2

Figure 2: Condorcet efficiency of plurality.

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

C
o

n
d

o
rc

et
 E

ff
ic

ie
n

cy
 (

%
)

Number of voters

STV STV M1 STV M2

Figure 3: Condorcet efficiency for iterated STV.

STV has the highest performance of all voting rules considered thus far. STV has already a high Con-
dorcet efficiency, but this is amplified by the use of manipulation moves, in particular M2. In Figure 3
we show that its Condorcet-efficiency can be augmented to more than 95 percent. As remarked earlier,
we observed convergence in all profiles considered.

The absence of any increase in Condorcet efficiency for veto (as well as 2-approval and 3-approval
using M1) is a consequence of the fact that our restricted moves do not change the candidates’ score with
these particular scoring vectors.

5 Conclusions and Future Work
This paper studies the iteration of classical voting rules allowing individuals to manipulate the outcome
of the election using a restricted set of manipulation moves.

We provided two new definitions of manipulation moves M1 and M2 and showed that they lead to
convergence for all voting rules considered (cf. Theorem 1 and 2). We also showed that most axiomatic
properties, such as unanimity and Condorcet consistency, are preserved in the iteration process. We
evaluated the performance of our restricted manipulation moves with respect to the Condorcet efficiency
of the iterated version of a voting rule as well as the average position of the winner in the initial truthful
profile. Our experiments showed that allowing restricted manipulation in iterative voting yields a positive
increase in Condorcet efficiency, and that, predictably, the best performance is obtained when more
information is given to agents (cf. the case of STV with M2).

24 Restricted Manipulation in Iterative Voting: Convergence and Condorcet Efficiency

This work gives rise to a number of interesting directions to be explored in future research. First,
different restrictions on manipulation moves may be considered, and their performance should be com-
pared with that of existing definitions. We tested a move similar to M2, which did not restrict the choice
of a candidate to those who become the new winners of the iterated election, obtaining a performance
comparable to that of M2. Restricted manipulation moves may also be evaluated using other parameters,
and could be tested on more realistic distributions of profiles of preferences, for instance by exploiting
data extracted from Internet-based polling services like Doodle.

References
[1] J. J. Bartholdi & J. B. Orlin (1991): Single transferable vote resists strategic voting. Social Choice and

Welfare 8, pp. 341–354, doi:10.1007/BF00183045.
[2] Steven J. Brams & Peter C. Fishburn (2002): Voting Procedures. In Kenneth Arrow, Amartya Sen & Kotaro

Suzumura, editors: Handbook of Social Choice and Welfare, Elsevier, doi:10.1016/S1574-0110(02)80008-X.
[3] P. Faliszewski & A. D. Procaccia (2010): AI’s War on Manipulation: Are We Winning? AI Magazine 31(4),

pp. 53–64.
[4] A. Gibbard (1973): Manipulation of Voting Schemes: A General Result. Econometrica 41(4), pp. 587–601,

doi:10.2307/1914083.
[5] O. Lev & J. S. Rosenschein (2012): Convergence of iterative voting. In: Proceedings of the 11th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS-2012).
[6] R. Meir, M. Polukarov, J. S. Rosenschein & N. R. Jennings (2010): Convergence to Equilibria in Plurality

Voting. In: Proceedings of the Twenty-fourth conference on Artificial Intelligence (AAAI-2010).
[7] M. Regenwetter, B. Grofman, A. Marley & I. Tsetlin (2006): Behavioral social choice. Cambridge University

Press.
[8] A. Reijngoud & U. Endriss (2012): Voter Response to Iterated Poll Information. In: Proceedings of the 11th

International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2012).
[9] M. A. Satterthwaite (1975): Strategy-proofness and Arrow’s conditions: Existence and correspondence the-

orems for voting procedures and social welfare functions. Journal of Economic Theory 10(2), pp. 187 – 217,
doi:10.1016/0022-0531(75)90050-2.

[10] A. D. Taylor (2005): Social choice and the mathematics of manipulation. Cambridge University Press,
doi:10.1017/CBO9780511614316.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 25–32, doi:10.4204/EPTCS.112.7

c© N. Asher & S. Paul
This work is licensed under the
Creative Commons Attribution License.

Infinite games with uncertain moves

Nicholas Asher and Soumya Paul
IRIT, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France.

{nicholas.asher,soumya.paul}@irit.fr ∗

We study infinite two-player games where one of the players isunsure about the set of moves avail-
able to the other player. In particular, the set of moves of the other player is a strict superset of what
she assumes it to be. We explore what happens to sets in various levels of the Borel hierarchy under
such a situation. We show that the sets at every alternate level of the hierarchy jump to the next higher
level.

1 Introduction

Infinte two-player games have attracted a lot of attention and found numerous applications in the fields
of topology, descriptive set-theory, computer science etc. Examples of such types of games are: Banach-
Mazur games, Gale-Stewart games, Wadge games, Lipschitz games, etc. [7, 6, 11, 3], and they each
characterize different concepts in descriptive set theory.

These games are typically played between two players, Player 0 and Player 1, who take turns in
choosing finite sequences of elements (possibly singletons) from a fixed setA (finite or infinite) which
is called the alphabet. This process goes on infinitely and hence defines an infinite sequenceu0u1u2 . . .
of finite strings which in itself is an infinite string over thesetA. In addition, the game has a winning
conditionWinwhich is a subset of the set of infinite strings overA, Aω . Player 0 is said to win the game
if the sequenceu0u1u2 . . . is in Win. Player 1 wins otherwise.

In addition to their applications in descriptive set-theory and topology, such games have also been
used in computer science in the fields of verification and synthesis of reactive systems [4]. The verifica-
tion problem is modeled as a game between two players: the system player and the environment player.
The winning setWin is specified using formulas in some logic, LTL, CTL,µ-calculus etc. The goal of
the system player is to meet the specification along every play and that of the environment player is to
exhibit a play which does not meet it. To verify the system then amounts to show that the system player
has a winning strategy in the underlying game and to find this strategy.

WhenWin is specified using the usual logics, it corresponds to sets inthe low levels of the Borel
hierarchy. It is known that the complexity of the winning strategy increases with the increase in the level
of the Borel hierarchy to whichWin belongs [10]. For instance, in Gale-Stewart games,reachability,
safety andMuller are winning conditions in theΣ0

1,Π
0
1 andΣ0

2 levels of the Borel hierarchy respectively
and a player has positional winning strategies for reachability and safety but needs memory to win for
the Muller condition. However it was shown in [5, 8] that a finite amount of memory suffices. The notion
of Wadge reductions also formalises this increase in complexity of the sets along the Borel hierarchy.

Such games (esp. Banach-Mazur and Gale-Stewart games) alsofind applications in linguistics. [2]
shows that conversations have a topological structure similar to that of Banach-Mazur games and explores
how the different types of objectives of conversations correspond to different levels in the Borel hierarchy

∗We thank ERC grant 269427 for research support.

26 Infinite games with uncertain moves

depending on their complexity. [2] also applied of the classical results from the literature of Banach-
Mazur games to the conversational setting. [1] applies Gale-Stewart games to the study of politeness.

In this paper, we look at what happens to sets in the Borel hierarchy when the underlying alphabet
is expanded. That is, the alphabet is changed fromA to B such thatB is a strict superset ofA. We show
that sets at every alternate level of the Borel hierarchy undergo a jump to the next higher level. More
precisely, a set at leveln of the hierarchy with alphabetA moves to leveln+ 1 when the alphabet is
expanded toB. This process goes on for all countable levels and stabilises atω .

Our result has consequences for both formal verification andlinguistic applications some of which
we elucidate in the concluding section.

The rest of the paper is organised as follows. In Section 2 we formally introduce the necessary
concepts and give the required background for the paper. Then in Section 3 we state and prove the main
results of the paper. Finally we conclude with some interesting consequences in Section 4.

2 Preliminaries

In this section we present the necessary background required for the paper. Although we define most
of the concepts used in the paper, we assume some familiaritywith the basic notions of topology and
set-theory.

2.1 Open and closed sets

Let A be a non-empty set. We sometimes refer toA as thealphabet. For any subsetX of A, as usual,
we denote byX∗ the set of finite strings overX and byXω , the set of countably infinite strings overX.
For any stringu∈ A∗∪Aω we denote theith element ofu by u(i). The set ofprefixes of u are all strings
v∈ A∗ such thatu= vv′ for v′ ∈ A∗∪Aω .

We define a topology onAω , the standard topology (also known as the Cantor topology) on the set
of infinite strings overA. This topology can be defined in at least three equivalent ways. The first way
is to define the discrete topology onA and then assignAω the product topology. The second way is to
explicitly define the open sets of the topology. The open setsare given by sets of the formXAω where
X is a subset ofA∗. Thus an open set is a set of finite strings overX followed by their all possible
continuations. For a setX ⊆ A∗, we denote the open setXAω by OA(X) or simply byO(X) when the
underlying alphabetA is clear from the context. WhenX is a singleton{u}, we abuse notation to denote
the open setuAω by OA(u). Example 1 illustrates these concepts.

Example 1. Let A= {a,b,c}. ThenabcAω is an open set and so isabAω ∪baAω . The complement of
the setabcAω is the setX of all strings that do not haveabcas their prefix. This is a closed set.

Yet another equivalent way to define the topology is to give anexplicit metric for it. Given two
strings,u1,u2 ∈ Aω , the distance between themd(u1,u2) is defined to be 1/2n(u1,u2), wheren(u1,u2) is
the first index whereu1 andu2 differ from each other. Thus the above topology is metrisable. Henceforth,
when we use the term ‘set’ we shall mean a subset ofAω .

Note that the set(abcAω) in the above example is also open. That is because it is a unionof the open
setsO(aa),O(ac),O(b) andO(c). Such sets, which are both open and closed are calledclopen sets. So
what is a set which is open but not closed (and vice versa)?

Proposition 1 ([9]) If A is a finite alphabet, a subset of Aω is clopen if and only if it is of the form XAω

where X is a finite subset of A∗.

N. Asher & S. Paul 27

Thus if A is finite then a set of the formXAω whereX is an infinite subset ofA∗ is open but not
closed. IfA is infinite, the subsets ofAω of the formXAω , whereX is a set of words of bounded length
of A∗ are clopen. However there might exist clopen sets which are not of this form.

2.2 The Borel hierarchy

A set of subsets ofAω is called aσ -algebra if it is closed under countable unions and complements. Given
a setX, the smallestσ -algebra containingX is called theσ -algebragenerated by X. It is equivalent to
the intersection of all theσ -algebras containingX. The sigma algebra generated by the open sets of a
topological space is called theBorel σ -algebra and its sets are called theBorel sets.

The Borel sets can also be defined inductively. This gives a natural hierarchy of classesΣ0
α andΠ0

α
for 1≤ α < ω1. Let Σ0

1 be the set of all open sets.Π1 = Σ0
1 is the set of all closed sets. Then for any

α > 1 whereα is a successor ordinal, defineΣ0
α to be the countable union of allΠ0

α−1 sets and define
Π0

α to be the complement ofΣ0
α . For a limit ordinalη , 1< η < ω1, Σ0

η is defined asΣ0
η =

⋃
α<η Σ0

α and

Π0
η = Σ0

η . The infinite hierarchy thus generated is called theBorel hierarchy and they together form the
Borel algebra. It is known [9] that if the space is metrisableand the underlying alphabet contains at least
two elements, then the hierarchy is indeed infinite, that is,the containments,Σ0

α ⊂ Σ0
α+1 andΠ0

α ⊂ Π0
α+1

are strict.

2.3 Wadge reductions and complete sets

Let A andB be two alphabets. A functionf : Aω → Bω is said to be continuous if for every open subset
Y ⊆ Bω , f−1(Y) is also open.

A set X ⊆ Aω is said toWadge reduce to another setY ⊆ Bω , denotedX ≤W Y, if there exists a
continuous functionf : Aω → Bω such thatf−1(Y) = X.

Let A be an alphabet. A setX ⊆ Aω is said to beΣ0
α (resp.Π0

α) complete if X ∈ Σ0
α (resp.X ∈ Π0

α)
and for any other alphabetB and for anyΣ0

α (resp.Π0
α) setY ⊆ Bω , Y ≤W X. Intuitively, given a class of

setsΓ, the complete sets of that class represent the sets which arestructurally the most complex in that
class.

For the Borel hierarchy, completeness can be characterisedin the following simple way:

Proposition 2 ([9]) Let X⊆ Aω . Then X isΠ0
α (resp. Σ0

α) complete if and only if X∈ Π0
α \Σ0

α (resp.
Σ0

α \Π0
α−1).

2.4 Infinite games

Let A be an alphabet. An infinite game onA is played between two players, Player 0 and Player 1,
who take turns in choosing finite sequences of elements (possibly singletons) from a fixed setA (finite
or infinite) which is called the alphabet. This process goes on infinitely and hence defines an infinite
sequenceu0u1u2 . . . of finite strings which in itself is an infinite string over thesetA. In addition, the
game has a winning conditionWin which is a subset of the set of infinite strings overA, Aω . Player 0 is
said to win the game if the sequenceu0u1u2 . . . is in Win. Player 1 wins otherwise.

In a Banach-Mazur game, each player at her turn chooses a finite non-empty sequence of elements
from A while in a Gale-Stewart game the players are restricted to choosing just single elements fromA.
An infinite game can also be imagined to be played on a graphG= (V,E) where the set of verticesV is
partitioned intoV0 andV1 which represent the Player 0 and 1 vertices respectively. The game starts at an
initial vertexv0 ∈V and the players take turns in moving a token along the edges ofthe graph depending

28 Infinite games with uncertain moves

on whose vertex it is currently. This process is continued adinfinitum and thus generates an infinite path
p in the graphG. Player 0 wins if and only ifp∈ WinwhereWin is a pre-specified set of infinite paths.

3 Results

In this section we present the main results of this paper. Given a subsetB of an alphabetA the topology
of Bω where the open sets are given byO∩Bω for every open setO of Aω is called the relative topology
of Bω with respect toAω . However we are interested in the opposite question. What happens when the
alphabet expands? In particular, we show that when the alphabet set changes fromA to B (say) such that
B is a strict superset ofA then the sets in the alternative levels of the Borel hierarchy undergo a jump in
levels.

Lemma 1 Let A and B be two alphabets such that A(B. An open set O in the space Aω jumps toΣ0
2 in

the space Bω . A closed set C in the space Aω remains closed in Bω .

Proof The proof is by carried out by coding the open setO in the spaceBω and demonstrating a
complete set forBω .

Let O be an open set inAω . ThenO is of the formXAω whereX ⊆ A∗. Let Xβ be an indexing of the
setX.

Each elementu of X gives the open setOA(u) which is a subset ofAω . Now, when we move to the
alphabetB, the setOB(u) is the set of strings which haveu as a prefix and all possible continuations using
letters ofB. ThusOB(u) is a strict superset ofOA(u). Hence, we need to restrictOB(u) in Bω such that
we obtain a set which is equal toOA(u) in Aω . One way to do do so is as follows. Consider all the finite
continuations ofu in letters fromA. Let Uγ be an indexed set of all these continuations. ThenOA(u) is
the set

OA(u) =
⋂

OB(u
′), u′ ∈ Uγ (1)

which is a closed set, being an arbitrary intersection of closed sets.
Thus the setO can be represented inBω as

O=
⋃

OA(u), u∈ Xβ

each of which by (1) is a closed set. HenceO∈ Σ0
2 in the spaceBω .

Next we demonstrate aΣ0
1 setO in a spaceAω which is complete forΣ0

2 in a spaceBω whereA(B.
Let A = {a,b} andB = {a,b,c}. Let X = {ab,abab,ababab, . . .} ⊂ A∗ and letO = XAω . ThenO is
open. Each subsetOA(u), u∈ X is represented inBω as

OA(u) = OB(u)∩OB(ua)∩OB(ub)∩OB(uaa)∩OB(uab)∩OB(uba)∩OB(ubb)∩ . . .

and
O= OA(u1)∪OA(u2)∪ . . . , ui ∈ X

HenceO is aΣ0
2 set inBω .

To show thatO is Σ0
2 complete forBω we use Proposition 2.O is not open inBω . Indeed, because

otherwise, there exists a finite stringu whose all possible continuations with letters fromB are inO and
that is a contradiction.O is also not closed inBω . To see this, note that the complement ofO, O in Aω

is the setXAω whereX ⊆ A∗ is given asX = {b,aa,abb,abaa, . . .}. ForO to be closed inBω , O should

N. Asher & S. Paul 29

be open inBω . This means that there should exist a finite stringv whose all possible continuations with
letters fromB are inO which is again a contradiction.

ThusO /∈ Σ0
1 andO /∈ Π0

1 in Bω and hence it is complete forΣ0
2 in Bω .

Next supposeC is a closed set inAω . We show how to representC in Bω . Let Uβ be the indexed set
of prefixes ofC. ThenC can be represented inBω as

C=
⋂

OB(v), v∈ Uβ

EachOB(v) is a closed set inBω and henceC being an arbitrary intersection of closed sets inBω is
closed. ThusC∈ Π0

1 in Aω remainsΠ0
1 in Bω .

We generalise the above Lemma to the entire Borel hierarchy in the following theorem.

Theorem 1 Let A and B be two alphabets such that A(B. We have the following in the Borel hierarchy:

1. For 1≤ α < ω andα odd,

(a) a set X∈ Σ0
α in the space Aω jumps toΣ0

α+1 in the space Bω

(b) a set X∈ Π0
α in the space Aω remainsΠ0

α in the space Bω .

2. For 1≤ α < ω andα even,

(a) a set X∈ Σ0
α in the space Aω remainsΣ0

α in the space Bω

(b) a set X∈ Π0
α in the space Aω jumps toΠ0

α+1 in the space Bω .

3. For α ≥ ω , a Σ0
α (resp.Π0

α) set remainsΣ0
α (resp.Π0

α) on going from the space Aω to Bω . That is,
the sets stabilise.

Proof The proof is by induction onα . For the base case,α = 1, the result follows from Lemma 1.
The inductive case is relatively straightforward, given the inductive structure of the Borel hierar-

chy. For convenience, we subscript the sets withA or B to denote whether they are sets inAω or Bω

respectively.
Suppose 1< α < ω andα is odd. Then

Σ0
α ,X =

⋃
Π0

α−1,X [by definition]

=
⋃

Π0
α ,Y [by induction hypothesis]

=Σ0
α+1,Y

Π0
α ,X =Σ0

α ,X =
⋃

Π0
α−1,X =

⋂
Π0

α−1,X =
⋂

Σ0
α−1,X [by definition]

=
⋂

Σ0
α−1,Y [by induction hypothetis]

=Π0
α ,Y

Now, suppose 1< α < ω andα is even. Then

Σ0
α ,X =

⋃
Π0

α−1,X [by definition]

=
⋃

Π0
α−1,Y [by induction hypothesis]

=Σ0
α ,Y

30 Infinite games with uncertain moves

Π0
α ,X =Σ0

α ,X =
⋃

Π0
α−1,X =

⋂
Π0

α−1,X =
⋂

Σ0
α−1,X [by definition]

=
⋂

Σ0
α ,Y [by induction hypothetis]

=Π0
α+1,Y

Finally,
Σ0

ω ,X =
⋃

n<ω
Σ0

n,X =
⋃

n<ω
Σ0

n,Y = Σ0
ω ,Y

and
Π0

ω ,Y = Σ0
ω ,Y = Π0

ω ,X

The above result can be concisely summarised by Figure 1.

Σ0
1 Σ0

2 Σ0
3 Σ0

4 Σ0
ω Σ0

ω+1 Σ0
ω1

Π0
1 Π0

2 Π0
3 Π0

4 Π0
ω Π0

ω+1 Π0
ω1

Figure 1: Jumps in the Borel hierarchy

4 Applications

The result we showed has interesting consequences in the fields of both formal verification and linguis-
tics.

4.1 Formal verification

As we mentioned in the introduction, to formally verify a reactive systemM (a piece of hardware or
software which interacts with users/environment), we often model the system as a finite graphG(M).
Two players, the system player and the environment player then play an infinite game onG(M). The goal
of the system player is to meet a certain specification on all plays onG(M) and that of the environment
player is to exibit a play which does not meet it.

The result stated in this paper represents situations wherethe system player is unsure about the exact
moves of the environment player. This shows that in such a situation, the system player might have to
strategise at a higher level of the hierarchy in order to account for this uncertainty.

It can also be used to represent situations where the underlying model might change (expand). Let
M be the original system andM′ be the expanded system (which is generated fromM by the addition
of a module say). If the objective of the system player inG(M) was to reach one of the states in some
subsetR of G(M) (reachability) then it is enough for her to play positionally. However, in the bigger

N. Asher & S. Paul 31

graphG(M′) she not only has to reachRbut also has to stay within the states of the original graphG(M)
in order to achieve the same objective. This is the Muller objective which is a level higher.

Example 2. Consider the example shown in Figure 2. Player 0 nodes have been depicted as© and
Player 1 nodes as�. Suppose initially the system isM and the objective of Player 1 inG(M) is to reach
v3. Then the winning set is the set of all sequences inV = {v0,v1,v2,v3} in which v3 occurs in some
position. That is,Win= {u | ∃i, u(i) = v3}. This is a reachability condition where the reachability set
R= {v3}. To win, Player 0 can either playv1 or v2 from v0 and hence both these strategies are winning
strategies for her. Now suppose the system expands toM′ where, inG(M′), it is possible for Player
1 to go to the new nodev4 from v1. Also supposeWin remains the same. ThenWin is no longer a
reachability condition because then it would also include sequences involving the vertexv4. It is rather a
Muller condition where the Muller setF = {{v0,v1,v2,v3}}. However, note that Player 0 does not have
a winning strategy in this game. That is because to win, she has to visit vertexv1 infinitely often from
which Player 1 can force the play throughv4 infinitely often.

v0v1 v2

v3

G(M)

v0v1 v2

v3

v4

G(M′)

Figure 2: Jump from reachability to Muller

4.2 Linguistics

In [2] we demonstrated what seems to be a compelling similarity between human conversations and
Banach-Mazur games. We showed how various conversational objectives correspond to various levels of
the Borel hierarchy and how strategies of increasing complexity are called for to attain such objectives.
Our result shows that when Player 1 is unsure about what Player 2 might say, it might be wise for her to
strategise at a higher level to account for this uncertainty. She engages in a conversation, believing she
is equipped with a strategy for all the situations the other player might put her into when suddenly the
other player says something and she is left dumbfounded.

An example which still sticks in the memory of one of the authors after almost 20 years is the mem-
orable line by Senator Lloyd Bentsen in his Vice-Presidential debate with Dan Quale in 1984. Quayle’s
strategy in the debate was to counter the perception that he was too inexperienced to have the job, and
he did this by drawing similarities between his political career and former President John Kennedy’s.
Quayle seemed to be doing a good job in achieving his objective or winning condition, when Bentsen
interrupted and said:

Sir, I knew Jack Kennedy. I knew Jack Kennedy. And you, sir, are no Jack Kennedy.

32 Infinite games with uncertain moves

Quayle’s strategy at that point fell apart. He had no effective come back and by all accounts lost the
debate handily.

The way we model this as follows. Building on [2], we take eachmove in a game to be a discourse
which may be composed of several, even many clauses. Abstractly, we consider such discourses as
sequences of basic moves, which we will be the alphabet. In a situation of incomplete information about
the discourse moves, the set of moves (or the alphabet) of theBanach Mazur game being played by the
players is different for the two players. Player 0 has an alphabetA (say) while Player 1 has an alphabet
B such thatA(B. Player 0 may or may not be aware of this fact.

Thus, from the point of view of Player 0, if she is playing a Banach-Mazur game where she is unsure
of the set of moves available to Player 1, it is better for her to strategise in such a way so as to account
for this jump in the winning set. In other words, if Player 0’swinning condition is at a leveln (say) of
the hierarchy, she is better off strategising for leveln+1 given that she is unsure of Player 1’s moves and
given that a set at leveln might undergo a jump to leveln+1. Thus Quayle might have even won the
debate had he strategiesed at a higher level expecting the unexpected.

References

[1] N. Asher, E. McReady & S. Paul (2012):Strategic Politeness. In: LENLS 9.

[2] N. Asher & S. Paul (2012):Conversations as Banach-Mazur Games. Dialogue and Discourse (submitted).

[3] D. Gale & F. M. Stewart (1953):Infinite Games with Perfect Information. Annals of Mathematical Studies
28, pp. 245–266.

[4] Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors (2002): Automata, Logics, and Infinite
Games: A Guide to Current Research. Lecture Notes in Computer Science2500, Springer, doi:10.1007/
3-540-36387-4.

[5] Y. Gurevich & L. Harrington (1982):Trees, automata and games. Proceedings of the 14th Annual Sympo-
sium on Theory of Computing, pp. 60–65, doi:10.1145/800070.802177.

[6] Akihiro Kanamori (2003):The higher infinite : large cardinals in set theory from theirbeginnings. Springer.

[7] A Kechris (1995): Classical descriptive set theory. Springer-Verlag, New York, doi:10.1007/
978-1-4612-4190-4.

[8] A. W. Mostowski (1991):Games with forbidden positions. Technical Report, Instytut Matematyki, Univer-
sytet Gdanski, Poland.

[9] D. Perrin & J. E. Pin (1995):Infinite Words - Automata, Semigroups, Logic and Games. Elsevier, doi:10.
1007/978-94-011-0149-3_3.

[10] Olivier Serre (2004):Games with Winning Conditions of High Borel Complexity. In: ICALP, pp. 1150–1162,
doi:10.1016/j.tcs.2005.10.024.

[11] William W. Wadge (1983):Reducibility and determinateness on the Baire space. Ph.D. thesis, UC, Berkeley.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 33–41, doi:10.4204/EPTCS.112.8

c© Nils Bulling & Valentin Goranko
This work is licensed under the
Creative Commons Attribution License.

How to Be Both Rich and Happy:
Combining Quantitative and Qualitative Strategic Reasoning

about Multi-Player Games (Extended Abstract)

Nils Bulling
Clausthal University of Technology, Germany

bulling@in.tu-clausthal.de

Valentin Goranko
Technical University of Denmark, Denmark

vfgo@imm.dtu.dk

We propose a logical framework combining a game-theoretic study of abilities of agents to achieve
quantitative objectives in multi-player games by optimizing payoffs or preferences on outcomes with
a logical analysis of the abilities of players for achieving qualitative objectives of players, i.e., reach-
ing or maintaining game states with desired properties. We enrich concurrent game models with
payoffs for the normal form games associated with the states of the model and propose a quantitative
extension of the logic ATL∗ enabling the combination of quantitative and qualitative reasoning.

1 Introduction

There are two rich traditions in studying strategic abilities of agents in multi-player games:
Game theory has been studying rational behavior of players, relevant for their achievement of quan-

titative objectives: optimizing payoffs (e.g., maximizing rewards or minimizing cost) or, more generally,
preferences on outcomes. Usually, the types of games studied in game theory are one-shot normal form
games, their (finitely or infinitely) repeated versions, and extensive form games.

Logic has been mostly dealing with strategic abilities of players for achieving qualitative objectives:
reaching or maintaining outcome states with desired properties, e.g., winning states, or safe states, etc.

Among the most studied models in the logic tradition are concurrent game models [5, 21]. On the
one hand they are richer than normal form games, as they incorporate a whole family of such games,
each associated with a state of a transition system; but on the other hand, they are somewhat poorer
because the outcomes of each of these normal form games, associated with a given state, are simply the
successor states with their associated games, etc. whereas no payoffs, or even preferences on outcomes,
are assigned. Thus, plays in concurrent game models involve a sequence of possibly different one-
shot normal form games played in succession, and all that is taken into account in the purely logical
framework are the properties – expressed by formulae of a logical language – of the states occurring in
the play. Concurrent game models can also be viewed as generalization of (possibly infinite) extensive
form games where cycles and simultaneous moves of different players are allowed, but no payoffs are
assigned.

Put as a slogan, the game theory tradition is concerned with how a player can become maximally
rich, or how to pay as little cost as possible, while the logic tradition – with how a player can achieve a
state of ‘happiness’, e.g. winning, or to avoid reaching a state of ‘unhappiness’ (losing) in the game.

The most essential technical difference between qualitative and quantitative players’ objectives is
that the former typically refer to (a temporal pattern over) Boolean properties of game states on a given
play and can be monitored locally whereas the latter are determined by the entire history of the play
(accumulated payoffs) or even the whole play (its value, being a limit of average payoffs, or of discounted

34 Logics for quantitative and qualitative objectives

accumulated payoffs). It is therefore generally computationally more demanding and costly to design
strategies satisfying quantitative objectives or to verify their satisfaction under a given strategy of a
player or coalition.

These two traditions have followed rather separate developments, with generally quite different agen-
das, methods and results, including, inter alia:

• on the purely qualitative side, logics of games and multiagent systems, such as the Coalition logic
CL [21], the Alternating time temporal logic ATL [5], and variations of it, see e.g. [15], [18], etc.,
formalizing and studying qualitative reasoning in concurrent game models;
• some single-agent and multi-agent bounded resource logics [9, 3, 19] extending or modifying

concurrent game models with some quantitative aspects by considering cost of agents’ actions and
reasoning about what players with bounded resources can achieve.
• extensions of qualitative reasoning (e.g., reachability and Büchi objectives) in multi-player con-

current games with ’semi-quantitative’ aspects by considering a preference preorder on the set
of qualitative objectives, see e.g., [6], [7], thereby adding payoff-maximizing objectives and thus
creating a setting where traditional game-theoretic issues such as game value problems and Nash
equlibria become relevant.
• deterministic or stochastic infinite games on graphs, with qualitative objectives: typically, reach-

ability, and more generally – specified as ω-regular languages over the set of plays, see e.g. [4],
[10], [12].
• on the purely quantitative side, first to mention repeated games, extensively studied in game theory

(see e.g., [20]), which can be naturally treated as simple, one-state concurrent game models with
accumulating payoffs paid to each player after every round and no qualitative objectives;
• from a more computational perspective, stochastic games with quantitative objectives on dis-

counted, mean or total payoffs, in particular energy objectives, see e.g. [11].
• the conceptually different but technically quite relevant study of counter automata, Petri nets,

vector addition systems, etc. – essentially a study of the purely quantitative single-agent case of
concurrent game models (see e.g. [14]), where only accumulated payoffs but no qualitative objec-
tives are taken into account and a typical problem is to decide reachability of payoff configurations
satisfying formally specified arithmetic constraints from a given initial payoff configuration.

A number of other relevant references discuss the interaction between qualitative and quantitative
reasoning in multi-player games, e.g. [22], [16], which we cannot discuss here due to space limitations.

This project purports to combine the two agendas in a common logical framework, by enriching
concurrent game models with payoffs for the one-shot normal form games associated with the states,
and thus enabling the combination of quantitative game-theoretic reasoning with the qualitative logical
reasoning. Again, put as a slogan, our framework allows reasoning about whether/how a player can
reach or maintain a state of ‘happiness’ while becoming, or remaining, as rich as (rationally) possible,
or paying the least possible price on the way. The purpose of this extended abstract is to introduce and
discuss a general framework of models and logics for combined quantitative and qualitative reasoning
that would naturally cover each of the topics listed above, and to initiate a long term study on it.

2 Preliminaries

A concurrent game model [5] (CGM) S = (Ag,St,{Acta}a∈Ag,{acta}a∈Ag,out,Prop,L) comprises:

Nils Bulling & Valentin Goranko 35

• a non-empty, fixed set of players Ag = {1, . . . ,k} and a set of actions Acta 6= /0 for each a ∈ Ag.
For any A⊆ Ag we will denote ActA := ∏a∈A Acta and will use −→α A to denote a tuple from ActA.
In particular, ActAg is the set of all possible action profiles in S .
• a non-empty set of game states St.
• for each a ∈ Ag a map acta : St→P(Acta) setting for each state s the actions available to a at s.
• a transition function out : St×ActAg → St that assigns the (deterministic) successor (outcome)

state out(q,−→α Ag) to every state q and action profile −→α Ag = 〈α1, . . . ,αk〉 such that αa ∈ acta(q)
for every a ∈ Ag (i.e., every αa that can be executed by player a in state q).
• a set of atomic propositions Prop and a labelling function L : St→P(Prop).

Thus, all players in a CGM execute their actions synchronously and the combination of these actions,
together with the current state, determines the transition to a (unique) successor state in the CGM.

The logic of strategic abilities ATL∗ (Alternating-Time Temporal Logic), introduced and studied in
[5], is a logical system, suitable for specifying and verifying qualitative objectives of players and coali-
tions in concurrent game models. The main syntactic construct of ATL∗ is a formula of type 〈〈C〉〉γ ,
intuitively meaning: “The coalition C has a collective strategy to guarantee the satisfaction of the objec-
tive γ on every play enabled by that strategy.” Formally, ATL∗ is a multi-agent extension of the branching
time logic CTL*, i.e., multimodal logic extending the linear-time temporal logic LTL– comprising the
temporal operators X (“at the next state”), G (“always from now on”) and U (“until”) – with strategic
path quantifiers 〈〈C〉〉 indexed with coalitions C of players. There are two types of formulae of ATL∗,
state formulae, which constitute the logic and that are evaluated at game states, and path formulae, that
are evaluated on game plays. These are defined by mutual recursion with the following grammars, where
C ⊆ Ag, p ∈ Prop: state formulae are defined by ϕ ::= p | ¬ϕ | ϕ ∧ϕ | 〈〈C〉〉γ , and path formulae by
γ ::= ϕ | ¬γ | γ ∧ γ | Xγ |Gγ | γ Uγ .

The logic ATL∗ is very expressive and that comes at a high computational price: satisfiability and
model checking are 2ExpTime-complete. A computationally better behaved fragment is the logic ATL,
which is the multi-agent analogue of CTL, only involving state formulae defined by the following gram-
mar, for C ⊆ Ag, p ∈ Prop: ϕ ::= p | ¬ϕ | ϕ ∧ϕ | 〈〈C〉〉Xϕ | 〈〈C〉〉Gϕ | 〈〈C〉〉(ϕ Uϕ). For this logic sat-
isfiability and model checking are ExpTime-complete and P-complete, respectively. We will, however,
build our extended logical formalism on the richer ATL∗ because we will essentially need the path-based
semantics for it.

Arithmetic Constraints. We define a simple language of arithmetic constraints to express con-
ditions about the accumulated payoffs of players on a given play. For this purpose, we use a set
VAg = {va | a ∈ Ag} of special variables to refer to the accumulated payoffs of the players at a given
state and denote by VA the restriction of VAg to any group A ⊆ Ag. The payoffs can be integers, ratio-
nals1, or any reals. We denote the domain of possible values of the payoffs, assumed to be a subset of
the reals R, by D and use a set of constants symbols X , with 0 ∈ X , for names of special real values (see
further) to which we want to refer in the logical language.

For fixed sets X and A⊆ Ag we build the set T (X ,A) of terms over X and A from X ∪VA by applying
addition, e.g. va + vb. An evaluation of a term t ∈ T (X ,A) is a mapping η : X ∪VA → D. We write
η |= t to denote that t is satisfied under the evaluation η . Moreover, if some order of the elements X ∪VA

is clear from context, we also represent an evaluation as a tuple from D|A|+|VA| and often assume that
elements from X have their canonic interpretation. The set AC(X ,A) of arithmetic constraints over X
and A consists of all expressions of the form t1∗t2 where ∗ ∈ {<,≤,=,≥,>} and t1, t2 ∈ T (X ,A). We use
ACF(X ,A) to refer to the set of Boolean formulae over AC(X ,A); e.g. (t1 < t2)∧ (t2 ≥ t3) ∈ ACF(X ,A)

1Note that models with rational payoffs behave essentially like models with integer payoffs, after once-off initial re-scaling.

36 Logics for quantitative and qualitative objectives

for t1, t2, t3 ∈ T (X ,A). We note that the language ACF(X ,A) is strictly weaker than Presburger arithmetic,
as it involves neither quantifiers nor congruence relations.

We also consider the set APC(X ,A) of arithmetic path constraints being expressions of the type wa∗c
where a ∈ Ag, ∗ ∈ {<,≤,=,≥,>} and c ∈ X . The meaning of wa is to represent the value of the current
play for the player a. That value can be defined differently, typically by computing the accumulated
payoff over the entire play, by using a future discounting factor, or by taking the limit – if it exists – of
the mean (average) accumulated payoff (cf. [20]). We note that the discounted, accumulated, mean or
limit payoffs may take real values beyond the original domain of payoffs D; so, we consider the domain
for X to be a suitable closure of D.

3 Concurrent Game Models with Payoffs and Guards
We now extend concurrent game models with utility values for every action profile applied at every state
and with guards that determine which actions are available to a player at a given configuration, consisting
of a state and a utility vector, in terms of arithmetic constraints on the utility of that player.

Definition 1 A guarded CGM with payoffs (GCGMP) is a tuple M= (S ,payoff,{ga}a∈Ag,{da}a∈Ag)
where S = (Ag,St,{Acta}a∈Ag,{acta}a∈Ag,out,Prop,L) is a CGM and:

• payoff : Ag× St×ActAg → D is a payoff function assigning at every state s and action profile
applied at s a payoff to every agent. We write payoffa(s,

−→α) for payoff(a,s,−→α).
• ga : St×Acta→ ACF(X ,{a}), for each player a ∈ Ag, is a guard function that assigns for each

state s∈ St and action α ∈Acta an arithmetic constraint formula ga(s,α) that determines whether
α is available to a at the state s given the current value of a’s accumulated payoff. The guard must
enable at least one action for a at s. Formally, for each state s ∈ St, the formula

∨
α∈Acta ga(s,α)

must be valid. Moreover, a guard ga(s,α) is called state-based if ga(s,α) ∈ ACF(X).
• da ∈ [0,1] is a discount factor, for each a∈Ag, used in order to define realistically values of infinite

plays for players or to reason about the asymptotic behavior of players’ accumulated payoffs.

The guard ga refines the function acta from the definition of a CGM, which can be regarded as a
guard function assigning to every state and action a constant arithmetic constraint true or false. In our
definition the guards assigned by ga only depend on the current state and the current accumulated payoff
of a. The idea is that when the payoffs are interpreted as costs, penalties or, more generally, consumption
of resources the possible actions of a player would depend on her current availability of utility/resources.

Example 1 Consider the GCGMP shown in Figure 1 with 2 players, I and II, and 3 states, where in
every state each player has 2 possible actions, C (cooperate) and D (defect). The transition function is
depicted in the figure. The normal form games associated with the states are respectively versions of the
Prisoners Dilemma at state s1, Battle of the Sexes at state s2 and Coordination Game at state s3.

The guards for both players are defined at each state so that the player can apply any action if
she has a positive current accumulated payoff, may only apply action C if she has accumulated payoff
0; and must play an action maximizing her minimum payoff in the current game if she has a negative
accumulated payoff. The discounting factors are 1 and the initial payoffs of both players are 0.

Configurations, plays, and histories. Let M be a GCGMP defined as above. A configuration (in
M) is a pair (s,−→u) consisting of a state s and a vector−→u = (u1, . . . ,uk) of currently accumulated payoffs,
one for each agent, at that state. Hereafter we refer to accumulated payoffs as utility, at a given state. We
define the set of possible configurations as Con(M) = St×D|Ag|. The partial configuration transition
function is defined as ôut : Con(M)×ActAg×N→ Con(M) such that ôut((s,−→u),−→α , l) = (s′,

−→
u′) iff:

Nils Bulling & Valentin Goranko 37

s1

s2 s3

(C ,D)
(D ,C)

(D ,D)

(C ,C)

(C ,C)

(D ,D)

(C ,D)
(D ,C)

(C ,C)
(D ,D)

(C ,D)
(D ,C)

I \ II C D
C 2, 2 − 3, 3
D 3, − 3 − 1, − 1

Prisoners Dilemma

I \ II C D
C 4, 3 0, 2
D − 1, − 2 2, 3

Battle of Sexes

I \ II C D
C 1, 1 − 1, − 1
D − 1, − 1 1, 1

Coordination Game

Figure 1: A simple GCGMP.

(i) out(s,−→α) = s′ (s′ is a successor of s if −→α is executed).
(ii) assigning the value ua to va satisfies the guard ga(s,αa) for each a ∈ Ag, i.e. ua |= ga(s,αa) (each

agent’s move αa is enabled at s by the respective guard ga applied to the current accumulated utility
value ua).

(iii) u′a = ua+ dl
a · payoffa(s,

−→α) for all a ∈ Ag (i.e., the utility values change according to the utility
function and the discounting rate where l denotes the number of steps that took place).

A GCGMP M with a designated initial configuration (s0,
−→u0) gives rise to a configuration graph on

M consisting of all configurations in M reachable from (s0,
−→u0) by the configuration transition function.

A play in a GCGMP M is an infinite sequence π = c0
−→α0,c1

−→α1, . . . from (Con(M)×Act)ω such that
cn ∈ ôut(cn−1,

−→α n−1) for all n > 0. The set of all plays in M is denoted by PlaysM. Given a play π we
use π[i] and π[i,∞] to refer to the ith element and to the subplay starting in position i of π , respectively.
A history is any finite initial sequence h = c0

−→α0,c1α1, . . . ,cn ∈ (Con(M)×Act)∗Con(M) of a play in
PlaysM. The set of all histories is denoted by HistM. For any history h we also define h[i] as for plays
and additionally h[last] and h[i, j] to refer to the last state on h and to the sub-history between i and j,
respectively. Finally, we introduce functions ·c, ·u, and ·s which denote the projection of a given play
or history to the sequence of its configurations, utility vectors, and states, respectively. For illustration,
let us consider the play π = c0

−→α0,c1
−→α1, We have that π[i,∞] = ci

−→αi ,ci+1
−−→αi+1, . . . ; π[i] = ci

−→α i;
πc[i,∞] = ci,ci+1, . . . ; πc[i] = ci; πa[i] =−→αi ; πu[i] = vi; and πs[i] = si where ci = (si,

−→ui).

Example 2 Some possible plays starting from s1 in Example 1 are given in the following where we
assume that the initial accumulated payoff is 0 for both agents. We note that this implies that the first
action taken by any agent is always C.

1. Both players cooperate forever: (s1,0,0),(s1,2,2),(s1,4,4), . . .
2. After the first round both players defect and the play moves to s2, where player I chooses to defect

whereas II cooperates. Then I must cooperate while II must defect but at the next round can choose
any action, so a possible play is: (s1,0,0),(s1,2,2),(s2,1,1),(s2,0,−1),(s2,0,1),(s2,0,3),(s2,0,5), . . .

3. After the first round player I defects while II cooperates and the play moves to s3, where they can
get stuck indefinitely, until – if ever – they happen to coordinate, so a possible play is:
(s1,0,0),(s1,2,2),(s3,5,−2),(s3,4,−3),(s3,3,−4), . . .(s3,0,−7),(s3,−1,−8),
Note, however, that once player I reaches accumulated payoff 0 he may only apply C at that round,
so if player II has enough memory or can observe the accumulated payoffs of I he can use the

38 Logics for quantitative and qualitative objectives

opportunity to coordinate with I at that round by cooperating, thus escaping the trap at s3 and
making a sure transition to s2.

4. If, however, the guards did not force the players to play C when reaching accumulated payoffs 0,
then both players could plunge into an endless misery if the play reaches s3.

Strategies. A strategy of a player a is a function sa : Hist → Act such that if sa(h) = α then
hu[last]a |= ga(hs[last],α); that is, actions prescribed by a strategy must be enabled by the guard. Our
definition of strategy is based on histories of configurations and actions, so it extends the notion of strat-
egy from [5] where it is defined on histories of states, and includes strategies, typically considered e.g.
in the study of repeated games, where often strategies prescribe to the player an action dependent on
the previous action, or history of actions, of the other player(s). Such are, for instance, TIT-FOR-TAT

or GRIM-TRIGGER in repeated Prisoners Dillemma; likewise for various card games, etc. Since our
notion of strategy is very general, it easily leads to undecidable model checking problems. So, we also
consider some natural restrictions, such as: state-based, action-based or configuration-based, memo-
ryless, bounded memory, of perfect recall strategies 2. Here we adopt a generic approach and assume
that two classes of strategies S p and S o are fixed as parameters, with respect to which the proponents
and opponents select their strategies, respectively. The proponent coalition A selects a S p-strategy sA

(i.e. one agreeing with the class S p) while the opponent coalition Ag\A selects a S o-strategy sAg\A.
The outcome play outcome playM(c,(sA,sAg\A), l) in a given GCGMP M determines the play emerging
from the execution of the (complete) strategy profile (sA,sAg\A) from configuration c in M.

4 The Logic: Quantitative ATL*
We now extend the logic ATL∗ to the logic QATL∗ with atomic quantitative objectives being state or path
arithmetic constraints over the players’ accumulated payoffs. The semantics of QATL∗ naturally extends
the semantics of ATL∗ over GCGMPs, but parameterised with the two classes of strategies S p and S o.

Definition 2 (The logic QATL∗) The language of QATL∗ consists of state formulae ϕ , which constitute
the logic, and path formulae γ , generated as follows, where A⊆Ag, ac∈AC, apc∈APC, and p∈ Prop:

ϕ ::= p | ac | ¬ϕ | ϕ ∧ϕ | 〈〈A〉〉γ and γ ::= ϕ | apc | ¬γ | γ ∧ γ | Xγ |Gγ | γUγ.
Let M be a GCGMP, c a configuration, ϕ,ϕ1,ϕ2 state-formulae, γ,γ1,γ2 path formulae, and l ∈

N. Further, let S p and S o be two classes of strategies as described above. The semantics of the
path constraints is specified according to the limit-averaging or discounting mechanism adopted for
computing the value of a play for a player. Then the truth of a QATL∗ formula at a position of a
configuration in M is defined by mutual recursion on state and path formulae as follows:
M,c, l |= p for p ∈ Prop iff p ∈ L(cs); M,c, l |= ac for ac ∈ AC iff cu |= ac,

M,c, l |= 〈〈A〉〉γ iff there is a collective S p-strategy sA for A such that for all collective S o-strategies
sAg\A for Ag\A we have that M,outcome playM(c,(sA,sAg\A), l), l |= γ .

M,π, l |= ϕ iff M,π[0], l |= ϕ; M,π, l |= apc iff πu, l |= apc for apc ∈ APC.

M,π, l |= Gγ iff M,π[i], l + i |= γ for all i ∈ N0,

M,π, l |= Xγ iff M,π[1], l +1 |= γ ,

M,π, l |= γ1Uγ2 iff there is j ∈ N0 such that M,π[j], l + j |= γ2 and M,π[i], l + i |= γ1 for all 0≤ i < j.

Ultimately, we define M,c |= ϕ as M,c,1 |= ϕ . Moreover, if not clear from context, we also write
|=(S p,S o) for |=.

2We note that all strategies need to be consistent with the guards, so state-based strategies are only applicable in models
where the guards only take into account the current state, but not the accumulated payoffs.

Nils Bulling & Valentin Goranko 39

The semantics presented above extends the standard semantics for ATL∗ and is amenable to various
refinements and restrictions, to be studied further. For instance, if appropriate, an alternative semantics
can be adopted, based on irrevocable strategies [1] or, more generally, on strategy contexts [8] or other
mechanisms for strategy commitment and release [2]. Also, the nested operators as defined here access
the accumulated utility values and require plays to be infinite. Similarly to [9], one can consider variants
of these settings which may yield decidable model checking and better complexity results.

As the logic QATL∗ extends ATL∗, it allows expressing all purely qualitative ATL∗ properties. It
can also express purely quantitative properties, e.g.: 〈〈{a}〉〉G(va > 0) meaning “Player a has a strategy
to maintain his accumulated payoff to be always positive”, or 〈〈A〉〉(wa ≥ 3) meaning “The coalition A
has a strategy that guarantees the value of the play for player a to be at least 3”. Moreover, QATL∗ can
naturally express combined qualitative and quantitative properties, e.g. 〈〈{a,b}〉〉((va+vb ≥ 1)Up)), etc.

Example 3 The following QATL∗ state formulae are true at state s1 of the GCGMP in Example 1, where
pi is an atomic proposition true only at state si, for each i = 1,2,3:
(i) 〈〈{I, II}〉〉F(p1∧ vI > 100∧ vII > 100)∧〈〈{I, II}〉〉XX〈〈{II}〉〉(G(p2∧ vI = 0) ∧ F vII > 100).
(ii) ¬〈〈{I}〉〉G(p1∨ vI > 0)∧¬〈〈{I, II}〉〉F(p3∧G(p3∧ (vI + vII > 0))).

5 (Un)Decidability: Related Work and Some Preliminary Results

Generally, the GCGMP models are too rich and the language of QATL∗ is too expressive to expect
computational efficiency, or even decidability, of either model checking or satisfiability testing. Some
preliminary results and related work show that model checking of QATL∗ in GCGMPs is undecidable
under rather weak assumptions, e.g. if the proponents or the opponents can use memory-based strategies.
These undecidability results are not surprising as GCGMPs are closely related to Petri nets and vector
addition systems and it is known that model checking over them is generally undecidable. In [13], for
example, this is shown for fragments of CTL and (state-based) LTL over Petri nets. Essentially, the
reason is that the logics allow to encode a “test for zero”; for Petri nets this means to check whether
a place contains a token or not. In our setting undecidability follows for the same reason, and we will
sketch some results below.

Undecidability results. The logic QATL restricts QATL∗ in the same way as ATL restricts ATL∗, due
to lack of space we skip the formal definition. As a first result we show that model checking QATL is
undecidable even if only the proponents are permitted to use perfect recall strategies and the opponents
are bound to memoryless strategies. More formally, let Spr denote the class of perfect recall state-based
strategies and Sm the class of memoryless state-based strategies. That is, strategies of the former class
are functions of type St∗→ Act and of the latter class functions of type St→ Act.

Undecidability can be shown using ideas from e.g. [9, 13]. Here, we make use of the construction
of [9] to illustrate the undecidability by simulating a two-counter machine (TCM). A TCM [17] can
be considered as a transition system equipped with two integer counters that enable/disable transitions.
Each step of the machine depends on the current state, symbol on the tape, and the counters, whether
they are zero or not. After each step the counters can be incremented (+1), or decremented (−1) , the
latter only if the respective counter is not zero. A TCM is essentially a (nondeterministic) push-down
automaton with two stacks and exactly two stack symbols (one of them is the initial stack symbol) and
has the same computation power as a Turing machine (cf. [17]). A configuration is a triple (s,w1,w2)
describing the current state (s), the value of counter 1 (w1) and of counter 2 (w2). A computation δ is a
sequence of subsequent configurations effected by transitions.

40 Logics for quantitative and qualitative objectives

For the simulation, we associate each counter with a player. The player’s accumulated payoff encodes
the counter value; actions model the increment/decrement of the counters; guards ensure that the actions
respect the state of the counters. The accepting states of the two-counter machine are encoded by a special
proposition halt. Now, the following lemma stating the soundness of the simulation can be proved:

Lemma 1 (Reduction) For any two-counter machine A we can construct a finite GCGMP MA with two
players and proposition halt such that the following holds: A halts on the empty input iff MA contains a
play π with πc = (s0,(v0

1,v
0
2))(s

1,(v1
1,v

1
2)) . . . such that there exists j ∈ N with halt ∈ L(s j).

The next theorem gives two cases for which the model checking problem is undecidable. By the
previous Lemma we have to ensure that the halting state is reached which can be expressed by 〈〈1〉〉Fhalt.
We can also use purely state-based guards and encode the consistency checks in the formula as follows:
〈〈1〉〉(v1 ≥ 0∧ v2 ≥ 0∧ e1→ va = 0∧ e2→ v2 = 0)Uhalt where the proposition ei is added to the model
to indicate that the value of counter i is zero. Not that this information is static and obtained from the
transition relation of the automaton.

Proposition 1 Model checking the logic QATL is undecidable, even for the 2 agent case and no nested
cooperation modalities, where S p = Spr and S o = Sm. This does even hold either for formulae not
involving arithmetic constraints, or for state-based guards.

Restoring decidability. There are some natural semantic and syntactic restrictions of QATL∗ where
decidability may be restored; these include for instance, the enabling of only memoryless strategies,
imposing non-negative payoffs, constraints on the transition graph of the model, bounds on players
utilities etc. For instance, the main reason for the undecidability result above is the possibility for negative
payoffs that allow for decrementing the accumulated payoffs and thus simulating the TCM operations.
Therefore, a natural restriction in the quest for restoring decidability is to consider only GCGMP models
with non-negative payoffs. In this case the accumulated payoffs increase monotonically over every play
of the game, and therefore the truth values of every arithmetic constraint occurring in the guards and in
the formula eventually stabilize in a computable way, which in the long run reduces the model checking
of any QATL-formula in an GCGMP to a model checking of an ATL-formula in a CGM. One can thus
obtain decidability of the model checking of the logic QATL in finite GCGMP with non-negative payoffs
and perfect information. We will discuss these and other decidability results in a future work, where we
will also consider restrictions similar to [9].

6 Concluding Remarks
This paper proposes a long-term research agenda bringing together issues, techniques and results from
several research fields. It aims at bridging the two important aspects of reasoning about objectives and
abilities of players in multi-player games: quantitative and qualitative, and eventually providing a uni-
form framework for strategic reasoning in multi-agent systems.

Acknowledgements: We thank the anonymous referees for detailed and helpful comments and ad-
ditional references.

References
[1] T. Ågotnes, V. Goranko & W. Jamroga (2007): Alternating-time Temporal Logics with Irrevocable Strategies.

In D. Samet, editor: Proceedings of TARK XI, pp. 15–24, doi:10.1145/1324249.1324256.
[2] T. Ågotnes, V. Goranko & W. Jamroga (2008): Strategic Commitment and Release in Logics for Multi-Agent

Systems (Extended abstract). Technical Report IfI-08-01, Clausthal University of Technology.

Nils Bulling & Valentin Goranko 41

[3] Natasha Alechina, Brian Logan, Nguyen Hoang Nga & Abdur Rakib (2011): Logic for coalitions with
bounded resources. J. Log. Comput. 21(6), pp. 907–937, doi:10.1093/logcom/exq032.

[4] Luca de Alfaro, Thomas A. Henzinger & Orna Kupferman (2007): Concurrent reachability games. Theor.
Comput. Sci. 386(3), pp. 188–217, doi:10.1016/j.tcs.2007.07.008.

[5] R. Alur, T. A. Henzinger & O. Kupferman (2002): Alternating-Time Temporal Logic. Journal of the ACM
49, pp. 672–713, doi:10.1145/585265.585270.

[6] Patricia Bouyer, Romain Brenguier, Nicolas Markey & Michael Ummels (2011): Nash Equilibria in Concur-
rent Games with Büchi Objectives. In S. Chakraborty & A. Kumar, editors: FSTTCS’2011 LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 375–386, doi:10.4230/LIPIcs.FSTTCS.2011.375.

[7] Patricia Bouyer, Romain Brenguier, Nicolas Markey & Michael Ummels (2012): Concurrent Games with
Ordered Objectives. In L. Birkedal, editor: Proc. of FoSSaCS’2012, Springer LNCS, vol. 7213, pp. 301–
315, doi:10.1007/978-3-642-28729-9 20.

[8] T. Brihaye, A. Da Costa, F. Laroussinie & N. Markey (2008): ATL with Strategy Contexts and Bounded
Memory. Technical Report LSV-08-14, ENS Cachan, doi:10.1007/978-3-540-92687-0 7.

[9] Nils Bulling & Berndt Farwer (2010): On the (Un-)Decidability of Model-Checking Resource-Bounded
Agents. In H. Coelho & M. Wooldridge, editors: Proc. of ECAI 2010, IOS Press, Amsterdam, pp. 567–
572, doi:10.3233/978-1-60750-606-5-567.

[10] Krishnendu Chatterjee, Luca de Alfaro & Thomas A. Henzinger (2011): Qualitative concurrent parity games.
ACM Trans. Comput. Log. 12(4), p. 28, doi:10.1145/1970398.1970404.

[11] Krishnendu Chatterjee & Laurent Doyen (2012): Energy parity games. Theor. Comput. Sci. 458, pp. 49–60,
doi:10.1016/j.tcs.2012.07.038.

[12] Krishnendu Chatterjee & Thomas A. Henzinger (2012): A survey of stochastic ω-regular games. J. Comput.
Syst. Sci. 78(2), pp. 394–413. Available at http://dx.doi.org/10.1016/j.jcss.2011.05.002.

[13] Javier Esparza: Decidability of Model Checking for Infinite-State Concurrent Systems. Acta Informatica 34,
pp. 85–107, doi:10.1007/s002360050074.

[14] Javier Esparza (1998): Decidability and complexity of Petri net problems - an Introduction. In: In Lectures
on Petri Nets I: Basic Models, Springer-Verlag, pp. 374–428, doi:10.1007/3-540-65306-6 20.

[15] Valentin Goranko & Wojciech Jamroga (2004): Comparing Semantics of Logics for Multi-agent Systems.
Synthese 139(2), pp. 241–280, doi:10.1023/B:SYNT.0000024915.66183.d1.

[16] Erich Grädel & Michael Ummels (2008): Solution Concepts and Algorithms for Infinite Multiplayer Games.
In Krzysztof Apt & Robert van Rooij, editors: New Perspectives on Games and Interaction, Texts in Logic
and Games 4, Amsterdam University Press, pp. 151–178. Available at http://www.logic.rwth-aachen.
de/~ummels/knaw07.pdf.

[17] JE Hopcroft & JD Ullman (1979): Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley, Reading, Massachusetts, doi:10.1145/568438.568455.

[18] W. Jamroga & T. Ågotnes (2007): Constructive Knowledge: What Agents Can Achieve under Incomplete
Information. Journal of Applied Non-Classical Logics 17(4), pp. 423–475, doi:10.3166/jancl.17.423-475.

[19] Dario Della Monica, Margherita Napoli & Mimmo Parente (2011): On a Logic for Coali-
tional Games with Priced-Resource Agents. Electr. Notes Theor. Comput. Sci. 278, pp. 215–228,
doi:10.1016/j.entcs.2011.10.017.

[20] M. Osborne & A. Rubinstein (1994): A Course in Game Theory. MIT Press.
[21] M. Pauly (2002): A Modal Logic for Coalitional Power in Games. J. of Logic and Computation 12(1), pp.

149–166, doi:10.1093/logcom/12.1.149.
[22] Sophie Pinchinat (2007): A Generic Constructive Solution for Concurrent Games with Expressive Con-

straints on Strategies. In K. Namjoshi et al, editor: Proc. of ATVA’2007, Springer LNCS, vol. 4762, pp.
253–267, doi:10.1007/978-3-540-75596-8 19.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 43–51, doi:10.4204/EPTCS.112.9

c© R. Dimitrova, B. Finkbeiner

Lossy Channel Games under Incomplete Information

Rayna Dimitrova
Saarland University, Germany

dimitrova@cs.uni-saarland.de

Bernd Finkbeiner
Saarland University, Germany

finkbeiner@cs.uni-saarland.de

In this paper we investigate lossy channel games under incomplete information, where two players
operate on a finite set of unbounded FIFO channels and one player, representing a system component
under consideration operates under incomplete information, while the other player, representing the
component’s environment is allowed to lose messages from the channels. We argue that these games
are a suitable model for synthesis of communication protocols where processes communicate over
unreliable channels. We show that in the case of finite message alphabets, games with safety and
reachability winning conditions are decidable and finite-state observation-based strategies for the
component can be effectively computed. Undecidability for(weak) parity objectives follows from the
undecidability of (weak) parity perfect information gameswhere only one player can lose messages.

1 Introduction

Lossy channel systems (LCSs), which are finite systems communicating via unbounded lossy FIFO
channels, are used to model communication protocols such aslink protocols, a canonical example of
which is the Alternating Bit Protocol. The decidability of verification problems for LCSs has been well
studied and a large number of works have been devoted to developing automatic analysis techniques. In
the control and synthesis setting, where games are the natural computational model, this class of systems
has not yet been so well investigated. In [1], Abdulla et al. establish decidability of two-player safety and
reachability games where one (or both) player has downward-closed behavior (e.g., can lose messages),
which subsumes games with lossy channels where one player (i.e., the environment) can lose messages.
They, however, assume that the game is played under perfect information, which assumption disregards
the fact that a process has no access to the local states of other processes or that it has only limited
information about the contents of the channels. To the best of our knowledge, games under incomplete
information where the players operate on unbounded unreliable channels have not been studied so far.

We definelossy channel games under incomplete informationand show that in the case of finite
message alphabets, games with safety and reachability winning conditions are decidable and finite-state
observation-based strategies for the player who has incomplete information can be effectively computed.

Algorithms for games under incomplete information carrying out an explicit knowledge based subset
construction [9] are not directly applicable to infinite-state games. Symbolic approaches [4] are effective
for restricted classes of infinite-state games like discrete games on rectangular automata [5]. The sym-
bolic algorithms that we present in this paper rely on the monotonicity of lossy channel systems w.r.t. the
subword ordering, which is a well-quasi ordering (WQO). It is well known that upward and downward-
closed sets of words used in the analysis of lossy channel systems can be effectively represented by finite
sets of minimal elements and simple regular expressions [2], respectively. Unsurprisingly, the procedures
for solving lossy channel games under incomplete information that we develop manipulate sets of sets of
states. Thus, our termination arguments rely on the fact that the subword ordering is in fact a better-quasi
ordering (BQO) [7, 8], a stronger notion than WQO that is preserved by the powerset operation [6].

44 Lossy Channel Games under Incomplete Information

0 1 4

0 1

23

567 8

A0 : RECEIVER A1 : SENDER

a0 : K?0,
a1 : K?1

u

a0 : K?0,
a1 : K?1

b0 : L!0,
b1 : L!1

t : K!0

t : L?0

t : K!1

t : L?1

t : K!0

t : L?1

t : K!1

t : L?0

t : L?0

t : L?1

t : K ∈ 0· {0,1}∗,L = ε
t : L?1t : L?1

t : K ∈ 1· {0,1}∗,L = ε
t : L?0 t : L?0

Figure 1: A communication protocol with partially specifiedRECEIVER process. For process RECEIVER

we haveΣ0 = {a0,a1,b0,b1,u} andΣ∃ = {b0,b1}. The property that the implementation must satisfy is
that location 4 in SENDER is not reachable, i.e., the receiver does not acknowledge messages that have
not been sent, and once all messages and acknowledgements from previous phases have been consumed,
the receiver can only send one delayed acknowledgement. Note that by using an extra channel and an
extra location in process RECEIVER we can ensure that the error location is in process RECEIVER.

2 Lossy Channel Games under Incomplete Information

Lossy channel systems are asynchronous distributed systems composed of finitely many finite-state pro-
cesses communicating through a finite set of unbounded FIFO channels that can nondeterministically
lose messages. We considerpartially specified lossy channel systems, where the term partially specified
refers to the fact that we consider a second (”friendly”) type of nondeterminism, in addition to the (”hos-
tile”) one due to the model. More specifically, this second type of nondeterminism modelsunresolved
implementation decisionsthat can be resolved in a favorable way. We consider the case when these de-
cisions are within a single process, and thus we can w.l.o.g.assume that the system consist of only two
processes: the process under consideration and the parallel composition of the remaining processes.

Definition 1. A partially specified lossy channel system (LCS)is a tupleL = (A0,A1,C,M,Σ0,Σ1,Σ∃),
where for eachprocess identifier p∈ {0,1}, Ap is a finite automaton describing the behavior of process
p, C is a finite set ofchannels, M is a finite set ofmessages, Σ = Σ0∪̇Σ1 is the union of the disjoint
finite sets oftransition labelsfor the two processes, andΣ∃ ⊆ Σ0 is a subset of the labels of thepartially
specified processA0. The automatonAp = (Qp,q0

p,δp) for a processp consists of a finite setQp of
control locations, an initial location q0

p and a finite setδ of transitionsof the form (q,a,Gr,Op,q′),
whereq,q′ ∈Qp, a∈ Σp, Gr :C→{true,(= ε),∈ (m·M∗) |m∈M} andOp:C→{!m,?m,nop|m∈M}.
Intuitively, the functionGr maps each channel to a guard, which can be an emptiness test, atest of the
letter at the head of the channel or the trivial guardtrue. The functionOpgives the update operation for
the respective channel, which is either a write, a read ornop, which leaves the channel unchanged.

Example. Fig.1 depicts a partially specified protocol consisting of two processes, SENDER and RE-
CEIVER, communicating over the unreliable channelsK and L. Process SENDER sends messages to
RECEIVER over channelK and RECEIVER acknowledges the receipt of a message using channelL. Note
that we use guards that test channels for emptiness or test the first letter of their contents.

The two processes are represented as nondeterministic finite-state automata. Process SENDER es-
sentially runs the Alternating Bit Protocol. Process RECEIVER, however, is onlypartially specified:
its alphabet of transition labelsΣ0 = {a0,a1,b0,b1,u} is partitioned according to the unresolved deci-
sions in the process specification: The subsetΣ∃ = {b0,b1} of controllable transition labels specifies the
unresolved implementation decisions, namely what bit to besent on channelL at location 1.

R. Dimitrova, B. Finkbeiner 45

The property that the protocol must satisfy is encoded as theunreachability of location 4 in process
SENDER. However, the automata can easily be augmented (with an extra channel and an error location
in process RECEIVER) in a way that the error location is in process RECEIVER. The property states that:

1. the receiver does not acknowledge messages that have not been sent, that is in location 2 in
SENDER the language ofL is 0∗ and in location 0 in SENDER the language ofL is 1∗,

2. once all messages and acknowledgements trailing from previous phases have been consumed (or
lost), the number of delayed acknowledgements the receivercan send is bounded by one.

A configurationγ = (q0,q1,w) of L is a tuple of the locations of the two processes and a function
w : C → M∗ that maps each channel to its contents. Theinitial configurationof L is γ0 = (q0

0,q
0
1,ε),

whereε(c) = ε for eachc∈C. The set of possible channel valuations isW = {w | w : C → M∗}.
Thestrong labeled transition relation→⊆ (Q0×Q1×W)×Σ× (Q0×Q1×W) of L consists of all

tuples((q0,q1,w),a,(q′0,q
′
1,w

′)) (denoted(q0,q1,w)
a→ (q′0,q

′
1,w

′)) such that ifa∈ Σp, thenq′1−p = q1−p

and there is a transition(qp,a,Gr,Op,q′p) ∈ δ such that for eachc ∈ C all of the following conditions
hold: (1) if Gr(c) = (∈ m·M∗) thenw(c)∈ m·M∗, (2) if Gr(c) = (= ε) thenw(c) = ε , (3) if Op(c) =!m,
thenw′(c) =w(c) ·m, (4) if Op(c) =?m, thenm·w′(c) =w(c), and (5) ifOp(c) = nop, thenw′(c) =w(c).

Let� denote the (not necessarily contiguous) subword relation on M∗ and let us define its extension
to elements ofW as follows:w1 � w2 for w1,w2 ∈W iff w1(c)� w2(c) for everyc∈C.

The weak labeled transition relation⇒⊆ (Q0 ×Q1 ×W)× Σ× (Q0 ×Q1 ×W) for L is defined
as follows: (q0,q1,w)

a⇒ (q′0,q
′
1,w

′) iff there exist w1 and w2 such thatw1 � w and w′ � w2 and
(q0,q1,w1)

a→ (q′0,q
′
1,w2), i.e., the channels can lose messages before and after the actual transition.

Definition 2 (LC-game structure with incomplete information). Let L = (A0,A1,C,M,Σ0,Σ1,Σ∃) be
a partially specified LCS, andCobs ⊆ C be a set ofobservable channelsthat includes the set of all
channels occurring in guards or read operations inA0. Thelossy channel game structure with incomplete
informationfor L andCobs is G (L ,Cobs) = (S, I ,→g,C,M,Σ0,Σ1,Σ∃,Cobs), where:

• The set ofstatesof G is S= {0,1}×Q0×Q1×W. The first componentp of a state(p,q0,q1,w)
identifies the process to be executed and the remaining ones encode the current configuration of
L . The set of initial states ofG is I = {(p,q0,q1,w) | p∈ {0,1}, q0 = q0

0, q1 = q0
1, w= ε}.

• The labeled transition relations→g⊆ S×Σ×S and⇒g⊆ S×Σ×S of G are defined as follows:
for statess= (p,q0,q1,w) and s′ = (p′,q′0,q

′
1,w

′) and a ∈ Σ we haves
a→g s′ iff a ∈ Σp and

(q0,q1,w)
a→ (q′0,q

′
1,w

′), and we haves
a⇒g s′ iff a∈ Σp and(q0,q1,w)

a⇒ (q′0,q
′
1,w

′).

Remark.The first component of states inS is used to model the interleaving semantics and is updated
nondeterministically in the transition relation→g (and⇒g). For simplicity, in Definition 2 we do not
make any assumptions about the nondeterministic choice of which process to be executed. One natural
assumption one might want to make is that the selected process must have at least one transition enabled
in the current state. This and other restrictions can be easily imposed in the above model.

For the rest of the paper, letG = G (L ,Cobs) = (S, I ,→g,C,M,Σ0,Σ1,Σ∃,Cobs) be the LC-game
structure with incomplete information for a partially specified LCSL and observable channelsCobs.

Player∃ plays the game under incomplete information, observing only certain components of the
current state of the game. LetHobs=Cobs→ (M∪{ε}) andObs= {0,1}×Q0×Hobs. Theobservation
function obs: S→ Obsmaps each states= (p,q0,q1,w) in G to the tupleobs(s) = (p,q0,h) of state
components observed byPlayer∃, where for eachc ∈ Cobs, if p = 1, thenh(c) = ε and otherwise if
w(c) = ε , thenh(c) = ε and ifw(c) = m·w′ for somem∈ M andw′ ∈ M∗, thenh(c) = m. That is, when

46 Lossy Channel Games under Incomplete Information

p= 0 we have forc∈Cobs thath(c) is the letter at the head ofw(c), whenc is not empty. Foro∈ Obs,
we denote withStates(o) = {s∈ S| obs(s) = o} the set of states whose observation iso.

Let S0 = {(p,q0,q1,w) ∈ S| p= 0} be the states where process 0 is to be executed andS1 = S\S0.
The gameG is played byPlayer∃ andPlayer∀ who build up a plays0a∃0a0s1a∃1a1 . . ., which is se-

quence of alternating states inS, labels inΣ⊥
∃ = Σ∃ ∪{⊥} and labels inΣ, starting with a states0 ∈ I .

Each time the current state is inS0, Player∃ has to choose a label from the setΣ∃∪{⊥}, that is either
a label fromΣ∃ of a transition enabled in the current state, or can be the special element⊥ in case no
transition with label inΣ∃ is enabled or if there exists an enabled transition with label from Σ0\Σ∃.

Let Enabled(s) = {a∈ Σ0 | ∃s′. s
a→g s′}. Note that for statess1,s2 ∈ S0 with obs(s1) = obs(s2) = o

it holds thatEnabled(s1) = Enabled(s2), and, abusing notation, we denote this set withEnabled(o).
For an observationo = (0,q0,h), the setAct∃(o) = (Enabled(o)∩ Σ∃)∪ {⊥ | Enabled(o)∩ Σ∃ =

/0 orEnabled(o)∩ (Σ0 \Σ∃) 6= /0} consists of the transition labels thatPlayer∃ can choose in a sets∈ S0

with obs(s) = o. For a labela∃ ∈ Σ⊥
∃ , the setAct∀(o,a∃) = ({a∃}∩Σ∃)∪ (Enabled(o) \Σ∃) consists of

the transition labels whichPlayer∀ can choose when the current choice ofPlayer∃ is a∃.
The play is built byPlayer∀ respecting the choices ofPlayer∃ and the transition relation⇒g.

When si ∈ S0, thena∃i ∈ Act∃(obs(si)) is the transition label chosen byPlayer∃ after the play prefix
s0a∃0a0s1a∃1a1 . . .a∃i−1ai−1si andai ∈ Act∀(obs(si),a∃i). After Player∃ has made his choice,Player∀ re-
solves the remaining nondeterminism by choosingai and the successor statesi+1 to extend the play.

A play in G is a sequenceπ = s0a∃0a0s1a∃1a1s1 . . . ∈ (S· (Σ⊥
∃ ·Σ ·S)∗∪S· (Σ⊥

∃ ·Σ ·S)ω) such thats0 ∈ I ,

for everyi ≥ 0 it holds thatsi
ai⇒g si+1, and ifsi ∈ S1, thena∃ =⊥, and ifsi ∈ S0 thena∃i ∈ Act∃(obs(si))

andai ∈ Act∀(obs(si),a∃i). A play π is finite iff last(π) has no successor inG , wherelast(π) ∈ S is the
last element ofπ. The setPrefs(G)⊆ S· (Σ⊥

∃ ·Σ ·S)∗ consists of the finite prefixes of plays inG , and we
denote withPrefs∃(G) = {π ∈ Prefs(G) | last(π) ∈ S0} the set of prefixes ending inS0.

A strategy for Player∃ is a total functionf∃ : Prefs∃(G)→ Σ⊥
∃ such thatf∃(π) ∈ Act∃(obs(last(π))).

The outcome of a strategy f∃ is the set of playsOutcome(f∃) such thatπ = s0a∃0a0s1a∃1a1 . . . ∈
Outcome(f∃) iff for every i ≥ 0 with si ∈ S0 it holds thata∃i = f∃(s0a∃0a0s1a∃1a1 . . .si).

We define a functionobs+ : Prefs∃(G)→ (Obs·Σ0)
∗ ·Obsthat maps a prefix inPrefs∃(G) to the se-

quence of state and action observations made byPlayer∃: obs+(s0a∃0a0s1a∃1a1 . . .sn)= obs′(s0) ·obs′(a0) ·
obs′(s1) ·obs′(a1) . . . ·obs′(sn), where fors∈ S, we defineobs′(s) = obs(s) if s∈ S0 andobs′(s) = ε oth-
erwise, and fora∈ Σ we defineobs′(a) = a if a∈ Σ0 andobs′(a) = ε otherwise.

We call a strategyf∃ for Player∃ obs+-consistentif for every pair of prefixesπ1 andπ2 in Prefs∃(G)
for which obs+(π1) = obs+(π2) holds, it also holds thatf∃(π1) = f∃(π2).

We are interested infinite-statestrategies forPlayer∃, that is, strategies that can be implemented as
finite automata. A finite stateobs+-consistent strategy forPlayer∃ in G is one that can be represented
as a finite automatonMs = (Qs,q0

s,(Q0×Hobs)× (Σ⊥
∃ ×Σ0),ρ) with alphabet(Q0×Hobs)× (Σ⊥

∃ ×Σ0),
whose transition relationρ ⊆ (Qs× ((Q0×Hobs)× (Σ⊥

∃ ×Σ0))×Qs) has the following properties:

(i) for eachq∈Qs, o∈Q0×Hobs, a∃ ∈ Σ⊥
∃ , a∈ Σ0, andq′1,q

′
2 ∈Qs, it holds that if(q,(o,(a∃,a)),q′1)∈

ρ and(q,(o,(a∃,a)),q′2) ∈ ρ , thenq′1 = q′2 (i.e., the transition relationρ is deterministic),

(ii) for eachq∈ Qs ando∈ Q0×Hobs there exista∃ ∈ Σ⊥
∃ , a∈ Σ0, q′ ∈ Qs with (q,(o,(a∃,a)),q′) ∈ ρ ,

(iii) if (q,(o,(a∃,a1)),q′1)∈ ρ anda2 ∈ Act∀((0,o),a∃), then(q,(o,(a∃,a2)),q′2)∈ ρ for someq′2 ∈Qs,

(iv) if (q,(o,(a∃1,a1)),q′1) ∈ ρ and(q,(o,(a∃2,a2)),q′2) ∈ ρ , thena∃1 = a∃2.

The automatonMs defines anobs+-consistent strategyf∃ for Player∃. According to the properties
of Ms, for eachπ ∈ Prefs∃(G) with obs+(π) = o0a0o1a1 . . .on−1an−1on there exists a unique sequence
a∃0a∃1a∃n−1 ∈ Σ⊥

∃
n

such that there is a run ofMs (also unique) on the wordo0a∃0a0o1a∃1a1 . . .on−1a∃n−1an−1.

R. Dimitrova, B. Finkbeiner 47

Let q be the last state of this run. We then definef∃(π) = a∃, wherea∃ ∈ Σ⊥
∃ is the unique label that

exists by conditions(ii) and(iv) such that there area∈ Σ0 andq∈ Qs such that(q,(on,(a∃,a)),q′) ∈ ρ .
We now turn to the definition of winning conditions in LC-games under incomplete information. We

considersafetyandreachabilitywinning conditions forPlayer∃ defined by visible sets of states inG . A
setT ⊆ S is visible iff for every s∈ T and everys′ ∈ Swith obs(s′) = obs(s) it holds thats′ ∈ T.

A safety LC-game under incomplete informationSafety(G ,Err) is defined by a LC-game structure
with incomplete informationG and a visible setErr of error states thatPlayer∃ must avoid. A strategy
f∃ for Player∃ is winning in Safety(G ,Err) iff no play in Outcome(f∃) visits a state inErr.

Note that according to this definition,Player∃ wins finite plays that do not reach an error state. If we
want to ensure that plays reaching a state inG that corresponds to a deadlock inL are not winning for
Player∃, we can easily achieve this by appropriately instrumentingL andErr.

A reachability LC-game under incomplete informationReach(G ,Goal) is defined by a LC-game
structure with incomplete informationG and a visible setGoal of goal states thatPlayer∃ must reach. A
strategyf∃ for Player∃ is winning in Reach(G ,Goal) iff each play inOutcome(f∃) visits a state inGoal.

Remark.The definition of visible sets allows thatErr ∩S1 6= /0 andGoal∩S1 6= /0. Thus, our definition
of visible objectives does not require that for each pair of plays π1 andπ2 with obs+(π1) = obs+(π2)
(whereobs+ is defined for plays analogously to prefixes) it holds thatPlayer∃ wins π1 iff he wins π2.
For the algorithms, which we present in the next section, forsolving safety and reachability LC-games
under incomplete information, the objective forPlayer∃ does not have to satisfy this condition.

3 Algorithms for Solving Safety and Reachability Games

Better-Quasi Orderings. The subword ordering� on M∗ is a WQO (and so is the ordering� onW
defined earlier). That means, it is a reflexive and transitiverelation such that for every infinite sequence
w0,w1, . . . of elements ofM∗ there exist indices 0≤ i < j such thatwi � w j .

The subword ordering (as well as other WQOs commonly used in verification) is in fact also a BQO,
and so is the ordering onW. Hence they are preserved by the powerset operation. Here weomit the
precise definition of BQOs since it is rather technical and itis not necessary for the presentation of our
results. When needed, we recall its properties relevant forour arguments.

We extend� to a BQO� on the setSof states inG in the following way: fors= (p,q0,q1,w) ∈ S
ands′ = (p′,q′0,q

′
1,w

′) ∈ S, we haves� s′ iff p= p′, q0 = q′0, q1 = q′1, obs(s) = obs(s′) andw� w′.
A set T ⊆ S is upward-closed(respectivelydownward-closed) iff for every s∈ T and everys′ ∈ S

with s� s′ (respectivelys′ � s) it holds thats′ ∈ T. The upward-closure of a setT ⊆ S is T ↑= {s′ ∈
S | ∃s. s∈ T ands� s′}. For each upward (respectively downward) closed setT ⊆ Sando∈ Obs, the
setT ′ = {s∈ T | obs(s) = o} is also upward (respectively downward) closed. We letUobs(S) = {u⊆ S|
u 6= /0, u= u ↑ and∃o∈ Obs.∀s∈ u. obs(s) = o} and foru∈ Uobs(S) we defineobs(u) in the obvious
way. The setDobs(S) andobs: Dobs(S) → Obsare defined analogously, requiring that the elements are
downward-closed instead of upward-closed.Dfin

obs(S) is the set of finite sets inDobs(S).

The transition relation⇒g enjoys the following property: ifs
a⇒g s′ ands� s′′, thens′′ a⇒g s′. Thus,

the set of predecessors w.r.t. somea ∈ Σ of any set of states is upward-closed. For LCSs the set of
successors w.r.t. somea∈ Σ of any set of states is a downward-closed set.

LetPre : P(S)×Σ → P(S) be the function defined asPre(T,a) = {s∈ S| ∃s′ ∈ T. s
a⇒g s′} and let

Post : P(S)×Σ → P(S) be the function defined asPost(T,a) = {s∈ S| ∃s′ ∈ T. s′ a⇒g s}. As recalled
above, for eachT ⊆ Sand eacha∈ Σ, Pre(T,a) is upward-closed andPost(T,a) is downward-closed.

48 Lossy Channel Games under Incomplete Information

We define the functionsPre0 : Uobs(S)×Σ0 → Pfin(Uobs(S)) andPre1 : Uobs(S) → Pfin(Uobs(S))
that map a setu ∈ Uobs(S) to a finite set of upward-closed sets that partition the respective set of pre-
decessors ofu according to the observationsPlayer∃ makes. Formally,Pre0(u,a) = {u′ ∈ Uobs(S) |
∃o∈ Obs. u′ = Pre(u,a)∩States(o)} andPre1(u) = {u′ ∈ Uobs(S) | ∃o∈ Obs. u′ = (

⋃
a∈Σ1

Pre(u,a))∩
States(o)}. Similarly, using the functionPost above, we can define the successor functionsPost0 :
Dobs(S)×Σ0 → Pfin(Dobs(S)) andPost1 : Dobs(S)→ Pfin(Dobs(S)). Since the transition relation ofG
has finite branching, ifd ∈ Dfin

obs(S) thend′ ∈ Dfin
obs(S) for d′ ∈ Post0(d,a) or d′ ∈ Post1(d).

When analyzing LCSs, upward-closed sets are typically represented by theirfinite sets of minimal el-
ements, and downward-closed sets are represented bysimple regular expressions. These representations
can be extended to obtain finite representations of elementsof Uobs(S) andDobs(S). By the definition
of � on S, each visible set of states is upward-closed, and hence, thesetsErr andGoal in safety and
reachability games are finitely representable. In the rest,we assume that they are represented such a way.

Our termination arguments rely on the following property: For every BQO� on a setX, the superset
relation⊇ is a BQO on the set of upward-closed sets inP(X) and the subset relation⊆ is a BQO on the
set of downward-closed sets. This implies that⊇ is a BQO onUobs(S) and that⊆ is a BQO onDobs(S).

LC-games under incomplete information with safety objectives. We describe a decision procedure
for safety LC-games under incomplete information which is based on a backward fixpoint computation.

Each step in the fixpoint computation corresponds to a step inthe game, which is not necessarily
observable byPlayer∃. Thus, this construction is correct w.r.t.Player∃ strategies that arẽobs-consistent,
where, intuitively, the functioñobsmaps a prefix to a sequence that includes also the (trivial) observations
of S1 states, and̃obs-consistency is defined analogously toobs+-consistency. To avoid this problem, our
algorithm performs the fixpoint computation on a LC-game structure with incomplete informatioñG
obtained fromG by adding anidle transition for process 1. This game structure has the following
property: Player∃ has anobs+-consistent winning strategy in the gameSafety(G ,Err) iff Player∃ has
an õbs-consistent winning strategy inSafety(G̃ ,Err), which yields correctness of the algorithm.

Formally, the functionõbs : Prefs∃(G) → (Obs∗ · Σ0)
∗ · Obs is defined as: õbs(s0a∃0a0 . . .sn) =

obs(s0) ·obs′(a0) · . . . ·obs(sn). The game structurẽG is the tupleG̃ = (S, I ,→̃g,C,M,Σ0, Σ̃1,Σ∃,Cobs)

whereΣ̃1 = Σ1∪{idle} andidle 6∈ Σ, and→̃g = →g ∪{((1,q0,q1,w), idle,(p′,q0,q1,w)) | p′ ∈ {0,1}}.
We define the setL (S) for SasL (S) = {l ∈Pfin(Uobs(S)) | l 6= /0 and∃o∈Obs.∀u∈ l . obs(u) = o}

and defineobs(l) for eachl ∈ L (S) in the obvious way. We provide a fixpoint-based algorithm that
computes a setB⊆ L (S) such that eachl ∈ B has the following property: ifK ⊆ S is the set of states
that the game can be currently in according toPlayer∃’s knowledge andK ∩u 6= /0 for everyu∈ l , then
Player∃ cannot win when his knowledge isK. Considering the setI of initial states, if for somel ∈ B it
holds thatI ∩u 6= /0 for all u∈ l , thenPlayer∃ has noobs+-consistent winning strategy inSafety(G ,Err).

Our procedure computes a sequenceB0 ⊆ B1 ⊆ B2 . . . of finite subsets ofL (S). The computation
starts with the setB0 = {{Err ∩States(o)} | o∈ Obs}. For i ≥ 0, we letBi+1 = Bi ∪Ni+1, where the set
Ni+1 of new elements is computed based onBi and is the smallest set that contains eachl ∈ L (S) which
is such thatl ⊆⋃

l ′∈Bi ,u′∈l ′((
⋃

a∈Σ0
Pre0(u′,a))∪Pre1(u′)) and:

• if l ∈P(P(S0)) then for every possible choicea∃ ∈ Act∃(obs(l)) of Player∃, there exist an action
a∈ Act∀(obs(l),a∃) andl ′ ∈ Bi such that for everyu′ ∈ l ′ it holds thatPre0(u′,a)∩ l 6= /0,

• if l ∈ P(P(S1)) then there existsl ′ ∈ Bi such that for everyu′ ∈ l ′ it holds thatPre1(u′)∩ l 6= /0.

The ordering⊑ onL (S) is defined such that forl , l ′ ∈ L (S), we havel ⊑ l ′ iff for every u∈ l there
exists au′ ∈ l ′ such thatu⊇ u′. The ordering⊑ is a BQO, since⊇ is a BQO onUobs(S). Intuitively, if l
belongs to the set of elements ofL (S) in which Player∃ cannot win, so does everyl ′ with l ⊑ l ′.

R. Dimitrova, B. Finkbeiner 49

We say that the sequenceB0,B1,B2 . . . converges at kif Min(Bk+1)⊆Min(Bk), whereMin(Bi) is the
set of minimal elements ofBi w.r.t.⊑. This condition can be effectively checked, since eachBi is finite.
We argue that there exists ak ≥ 0 such that the sequence computed by the procedure describedabove
converges atk (and hence the procedure will terminate).

Let F0,F1,F2, . . . be the sequence of upward-closed elements ofP(L (S)) whereFi = Bi ↑ for each
i ≥ 0. AsF0,F1,F2 . . . is a monotonically increasing sequence of upward-closed sets of elements ofL (S),
it must eventually stabilize, i.e., there is ak≥ 0 such thatFk+1 ⊆ Fk. Thus, sinceFi+1 ⊆ Fi if and only if
Min(Bi+1)⊆Min(Bi), the sequenceB0,B1,B2 . . . is guaranteed to converge at somek≥ 0.

Proposition 1. Let B= Bk, where the sequence B0,B1,B2 . . . converges at k. Then, Player∃ has an
õbs-consistent winning strategy inSafety(G̃ ,Err) iff for every l∈ B there exists u∈ l with u∩ I = /0.

If Player∃ has anõbs-consistent winning strategy inSafety(G̃ ,Err), then Player∃ has a finite-state
obs+-consistent winning strategy in the original gameSafety(G ,Err).

Proof Idea. A counterexample tree forSafety(G̃ ,Err) represents a witness for the fact thatPlayer∃ does
not have añobs-consistent winning strategy inSafety(G̃ ,Err). It is a finite tree with nodes labeled with
elements ofDobs(S). If there is al ∈ B such thatu∩ I 6= /0 for everyu∈ l , a counterexample tree can be
constructed in a top-down manner. For the other direction wecan show by induction on the depth of the
existing counterexample trees that there exists al ∈ B such thatu∩ I 6= /0 for everyu∈ l .

For the case whenPlayer∃ wins the gameSafety(G̃ ,Err) we can construct a finite-stateobs+-
consistent winning strategy forPlayer∃ in the gameSafety(G ,Err) by using as states for the strategy
automaton functions from observations to a finite setV ⊆ Pfin(P(S)) each of whose elementsV pre-
serves the invariant that for everyl ∈ B there exists au∈ l such thatu∩⋃

v∈V v= /0.

LC-Games under incomplete information with reachability objectives. For reachability games
we give a procedure based on forward exploration of the sets of states representing the knowledge of
Player∃ about the current state of the game. SincePlayer∃ can only observe the heads the observable
channels, his knowledge at each point of the play is a finite downward-closed set, element ofDfin

obs(S).
To update this knowledge we define functionsPostobs

0 : Dfin
obs(S)× Σ0 → Pfin(D

fin
obs(S)) andPostobs

1 :
Dfin

obs(S) → Pfin(D
fin
obs(S)) that map a setd ∈ Dfin

obs(S) to a finite set of elements ofDfin
obs(S), each of

which is a set of states thatPlayer∃ knows, according to his current observation, the game may be
in after (a transition fromΣ0 and) a sequence of transitions fromΣ1. For eachd ∈ Dfin

obs(S) we have
d′ ∈ Postobs

0 (d,a) (respectivelyd′ ∈ Postobs
1 (d)) iff there exists a sequenced0,d1, . . . ,dn ∈ Dfin

obs(S) such
thatd0 ∈Post0(d,a) (respectivelyd0 = d), for every 1≤ i ≤ n it holds thatdi−1 ⊆S1 anddi ∈Post1(di−1),
and for every 0≤ i < j < n it holds thatdi 6⊆ d j and one of the following conditions is satisfied: (1)
d′ ⊆ Goal, d′ = d0 andn= 0 (i.e.,d′ ⊆ Goal∩S1), or (2) there exists a 1≤ i < n such thatdi ⊆ dn and
d′ = dn (i.e.,d′ ⊆ S1), or (3)d′ = {(0,q′0,q′1,w′) | (1,q′0,q′1,w′) ∈⋃n

i=0 di} (i.e.,d′ ⊆ S0).
We construct a finite set of trees rooted at the different possible knowledge sets forPlayer∃ at location

q0
o. The nodes of the trees are labeled with knowledge sets, i.e., with elements ofDfin

obs(S). The edges
are labeled wit pairs of transition labels, i.e., elements of Σ⊥

∃ ×Σ0, where the first element of a pair is a
possible choice ofPlayer∃ and the second element is a corresponding choice ofPlayer∀.

Formally, the forward exploration procedure constructs a forestT in which the roots are labeled
with the sets{(0,q0

0,q
0
1,ε)} and all the setsd ∈ Postobs

1 ({(1,q0
0,q

0
1,ε)} \Goal). At each step of the

construction an open leaf noden with labeld is processed in the following way:

• If d ⊆ Goal, we close the node and do not expand further from this node.
• If d 6⊆ Goal and eitherd ⊆ S0 and there exists an ancestor ofn that is labeled withd′ and such that

d′ ⊆ d, or d ⊆ S1, we close the node and do not expand further from this node.

50 Lossy Channel Games under Incomplete Information

• Otherwise, we add the set of successors ofn: for eacha∃ ∈Act∃(obs(d)), eacha∈Act∀(obs(d),a∃)
and eachd′ ∈ Postobs

0 (d,a) we add exactly one successorn′ labeled withd′ and label the edge
(n,n′) with (a∃,a). The set of successors for(a∃,a) is denoted withChildren(n,a∃,a).

The finite branching of the transition relation ofG and the fact that⊆ is a BQO onDfin
obs(S) imply

that each of the setsPostobs
0 (d,a) andPostobs

1 (d) can be effectively computed, the set of roots and the
out-degree of each node are finite, and the above procedure terminates constructing a finite forestT .

We label each noden in T with a boolean valuewin(n). For a leaf noden with d(n) ⊆ Goal, we
definewin(n) = true and for any other other leaf noden we definewin(n) = false. The value of a non-
leaf node is computed based on those of its children by interpreting the choices ofPlayer∃ disjunctively
and the choices ofPlayer∀ conjunctively. Formally, for every non-leaf noden we definewin(n) =∨

a∃∈Act∃(obs(d(n)))
∧

a∈Act∀(obs(d(n)),a∃)
∧

n′∈Children(n,a∃,a) win(n′), whered(n) is the set of states labelingn.

Proposition 2. Player∃ has an obs+-consistent winning strategy inReach(G ,Goal) iff for every root n
in T it holds that win(n) = true. If Player∃ has an obs+-consistent winning strategy inReach(G ,Goal),
then he also has a finite state obs+-consistent winning strategy inReach(G ,Goal).

Proof Idea. If all the roots are labeled withtrue we can construct a finite-stateobs+-consistent strategy
winning for Player∃ in Reach(G ,Goal), by mapping each prefix inPrefs∃(G) to a label inΣ⊥

∃ , deter-
mined by a corresponding path inT and a fixed successful choice at its last node, if such path andchoice
exist, or given an appropriate default value otherwise. Forthe other direction we suppose that some root
is labeled withfalseand show that for anyobs+-consistent strategyf∃ for Player∃, we can use the tree
to construct a playπ ∈Outcome(f∃) that never visits a state inGoal.

LC-games under incomplete information with parity objectives. We now turn to more general
ω-regular visible objectives forPlayer∃ where the undecidability results established in [1] for perfect
information lossy channel games in which only one player canlose messages, carry on to our setting.

A visible priority function pr: Obs→ {0,1, . . . ,n} for natural numbern ∈ N maps each observa-
tion to a non-negative integer priority. For an infinite playπ = s0a∃0a0s1a∃1a1 . . . we definepr(π) =
min{pr(o) | o∈ InfObs(π)}, whereInfObs(π) is the set of observations that occur infinitely often inπ,
and definewpr(π) = min{pr(obs(s0)),pr(obs(s1)), . . .}. A parity (respectivelyweak parity) LC-game
under incomplete informationParity(G ,pr) (respectivelyWeakParity(G ,pr)) is defined by a LC-game
structure with incomplete informationG and a visible priority functionpr. A strategy f∃ for Player∃ is
winning in the parity gameParity(G ,pr) (weak parity gameWeakParity(G ,pr)) iff for every infinite play
π ∈Outcome(f∃) it holds thatpr(π) is even (respectivelywpr(π) is even).

Proposition 3. The weak parity game solving problem for LC-games under incomplete information, that
is, given a weak parity LC-game under incomplete information WeakParity(G ,pr) to determine whether
there exists an obs+-consistent winning strategy for Player∃ in WeakParity(G ,pr), is undecidable.

Proof Idea. In [1] it was shown that in the perfect information setting the weak parity problem for B-
LCS games, which are games played on a finite set of channels inwhich player A has a weak parity
objective and only player B is allowed to lose messages, is undecidable. Their proof (given for A-LCS
games but easily transferable into a proof for B-LCS games) is based on a reduction from the infinite
computation problem for transition systems based on lossy channel systems, which is undecidable [3].

We argue that this reduction can be adapted for our framework, with Player∃ in the role of player A
andPlayer∀ in the role of player B. The fact that herePlayer∃ choses only transition labels and plays
under incomplete information does not affect the proof for B-LCS games, since there player A just

R. Dimitrova, B. Finkbeiner 51

follows passively, while player B simulates the original system. The values of the priority function used
in [1] do not depend on the contents of the channels. Thus, we can define a visible priority function.

As a consequence, the parity game solving problem for LC-games under incomplete information is
undecidable as well. As noted in [1], the construction from the proposition above can be used to show
undecidability of A-LCS and B-LCS games with Büchi and co-Büchi objectives.

Summary of the results. The results of the paper are summarized in the following theorem.
Theorem 1. For lossy channel game structures with incomplete information

• games with visible safety or reachability objectives for Player∃ are decidable, and when Player∃
has an observation-based winning strategy, a finite-state such strategy can be effectively computed,

• games with visible weak parity objectives for Player∃ are undecidable.

4 Conclusion

We showed that the game solving problem for LC-games under incomplete information with safety
or reachability objective forPlayer∃ is decidable. LC-games under incomplete information with more
general winning conditions, such as weak parity (as well as Büchi and co-Büchi) condition can easily be
shown to be undecidable, using a reduction similar to the onedescribed in [1] for A-LCS games (which
are perfect information games defined on LCSs in which only one player can lose channel messages). An
orthogonal extension that is also clearly undecidable is decentralized control. This implies that suitable
abstraction techniques are needed to address the synthesisproblem within these undecidable settings.

AcknowledgementsThis work is partially supported by the DFG as part of SFB/TR 14 AVACS.

References

[1] Parosh Aziz Abdulla, Ahmed Bouajjani & Julien d’Orso (2008): Monotonic and Downward Closed Games.
J. Log. Comput.18(1), pp. 153–169, doi:10.1093/logcom/exm062.

[2] Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani & Bengt Jonsson (2004):Using Forward
Reachability Analysis for Verification of Lossy Channel Systems. FMSD 25(1), pp. 39–65, doi:10.1023/B:
FORM.0000033962.51898.1a.

[3] Parosh Aziz Abdulla & Bengt Jonsson (1996):Undecidable Verification Problems for Programs with Unreli-
able Channels. Inf. Comput.130(1), pp. 71–90, doi:10.1006/inco.1996.0083.

[4] K. Chatterjee, L. Doyen, T. A. Henzinger & J.-F. Raskin (2006): Algorithms for Omega-Regular Games with
Imperfect Information. In: Proc. CSL’06, LNCS 4207, Springer, pp. 287–302, doi:10.1007/11874683_19.

[5] M. De Wulf, L. Doyen & J.-F. Raskin (2006):A Lattice Theory for Solving Games of Imperfect Information.
In: Proc. HSCC’06, LNCS 3927, Springer, pp. 153–168, doi:10.1007/11730637_14.

[6] Alberto Marcone (2001):Fine Analysis of the Quasi-Orderings on the Power Set. Order18(4), pp. 339–347,
doi:10.1023/A:1013952225669.

[7] E. C. Milner (1985): Basic Wqo- and Bqo-Theory. In: Graphs and order, pp. 487–502, doi:10.1007/
978-94-009-5315-4_14.

[8] C. Nash-Williams (1965):On well-quasi ordering infinite trees. Proceedings of the Cambridge Philosophical
Society61, pp. 697–720, doi:10.1017/S0305004100039062.

[9] John H. Reif (1984):The Complexity of Two-Player Games of Incomplete Information. J. Comput. Syst. Sci.
29(2), pp. 274–301, doi:10.1016/0022-0000(84)90034-5.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 53–59, doi:10.4204/EPTCS.112.10

c© Kwiatkowska, Parker & Simaitis
This work is licensed under the
Creative Commons Attribution License.

Strategic Analysis of Trust Models for User-Centric Networks

Marta Kwiatkowska
Department of Computer Science

University of Oxford

David Parker
School of Computer Science
University of Birmingham

Aistis Simaitis
Department of Computer Science

University of Oxford

We present a strategic analysis of a trust model that has recently been proposed for promoting cooper-
ative behaviour in user-centric networks. The mechanism for cooperation is based on a combination
of reputation and virtual currency schemes in which service providers reward paying customers and
punish non-paying ones by adjusting their reputation, and hence the price they pay for services. We
model and analyse this system using PRISM-games, a tool that performs automated verification and
strategy synthesis for stochastic multi-player games using the probabilistic alternating-time tempo-
ral logic with rewards (rPATL). We construct optimal strategies for both service users and providers,
which expose potential risks of the cooperation mechanism and which we use to devise improvements
that counteract these risks.

1 Introduction

User-centric networks are designed to encourage users to act cooperatively, sharing resources or services
between themselves, for example in order to provide connectivity in a mobile ad-hoc network. The
effectiveness of such networks is heavily dependent on their cooperation mechanisms, which are often
based on the use of incentives to behave unselfishly. In this paper, we present an analysis of a cooperation
mechanism for user-centric networks [3], which combines a reputation-based incentive, used to establish
a measure of trust between users, and a virtual currency mechanism used to “buy” and “sell” services.

The cooperation model proposed in [3] was analysed formally by the authors using probabilistic
model checking [1, 2]. They verified several performance properties, specified in the probabilistic tem-
poral logics PCTL and CSL, on discrete- and continuous-time Markov chains models and, in [1], also
used Markov decision processes to assess the worst-case performance of service providers.

In this paper, we take a different approach and study the cooperation mechanism using strategy-
based analysis. The system is modelled as a stochastic multi-player game, in which service providers
and customers are modelled as players with objectives, expressed in the logic probabilistic alternating-
time temporal logic with rewards (rPATL) [4]. We model and analyse the cooperation mechanism using
PRISM-games [5], a probabilistic model checker for stochastic multi-player games. We use rPATL
model checking to identify weaknesses in the cooperation mechanism and then perform strategy synthesis
to discover important insights into the model: firstly, we construct and visualise potential attacks or
undesirable behaviour; secondly, we develop improvements to the system that alleviate these problems
and check their correctness.

Related work. Game-theoretic techniques have been applied to a wide variety of problems in the con-
text of computer networks, from network security [8] to self-organisation in ad-hoc networks [6]. Of
particular relevance to this paper is the work in [7], which gives a game-theoretic analysis of cooperative
incentive schemes in mobile ad-hoc networks and proposes the combination of trust and currency mech-
anisms used in [3]. Its effectiveness is analysed using a combination of theoretical and simulation results.
By contrast, we adopt a semi-automatic approach where the strategies are synthesised automatically by
the tool from rPATL specifications, and are then analysed to understand and improve the cooperation

54 Strategic Analysis of Trust Models for User-Centric Networks

mechanism. The logic rPATL has been previously used to analyse cooperation incentives in micro-grid
energy management and decentralised agreement in sensor networks [4], but a detailed strategy-based
analysis was not performed.

2 Modelling the Cooperation Mechanism

2.1 The cooperation mechanism

The basic ideas behind the cooperation mechanism of [3] can be summarised as follows. We assume a
general model of providers offering services to requesters. Cooperation between users of the network
(requesters and providers) is managed through a combination of reputation and virtual currency.

Reputation is captured by a discrete trust measure, denoted trusti j, representing the extent to which
user i trusts user j, based on previous interactions between them and the recommendations provided by
the other users in the network. This is used to determine whether a service request from j is accepted
by i. A trust level Ti j is computed as a weighted sum Ti j = α · trusti j +(1−α) · recsi j, where recsi j is
an “indirect” trust measure, taken as the the average value of trustk j for other users k (whereas trusti j is
called a “direct” measure of trust). By default, i will decide to accept j’s request if Ti j is not below a
pre-specified service trust level, denoted sti. The parameter α ∈ [0,1] controls the relative influence that
the direct and indirect measures of trust have on this decision.

The reputation scheme is then integrated with a virtual currency system, where services are bought
and sold between users, and the cost paid to i by j for a service is a function of trusti j. Assuming model
parameters for minimum and maximum costs Cmin,Cmax and threshold T ′, the cost is defined as

C(trusti j) =

{
Cmin +

Cmax−Cmin
T ′ · (T ′− trusti j) if trusti j < T ′

Cmin if trusti j ≥ T ′

Procurement of a service proceeds in several phases. First, a requester j chooses a provider i and
makes a request. If Ti j ≥ sti, the request is accepted. In this case, the two users then “negotiate” the
service cost, using the function of trusti j given above. The negotiation may, however, fail: with proba-
bility ci, user i cancels the accepted request; this represents the “cooperative attitude” [1] of the provider
i. If not cancelled, the service is delivered and the requester chooses whether or not to pay the negotiated
price to the provider. If payment is made, the provider increases the trust measure of the requester by
one unit. If not, the measure is decreased by tdi units. On encountering a requester for the first time, a
provider shares the trust measure with the other providers.

2.2 A stochastic game model

We build a model of the cooperation mechanism of [3] as a (turn-based) stochastic multi-player game
(SMG). An SMG comprises a finite set of players and a finite set of states. In each state, exactly one
player chooses (possibly randomly) from a set of available actions. When an action is taken, the result is
a probabilistic transition, i.e. a successor state is chosen according to a discrete probability distribution.
The choices for each player are made by a strategy, which selects an action (or distribution over actions)
based on the history of the SMG so far. The strategies needed in this paper are memoryless (i.e. history
independent) and deterministic (i.e. do not use randomisation).

We developed the SMG model using the PRISM-games model checker, taking the PRISM model
of [1] as a starting point.1. The SMG model has one player for each user in the network. The choices

1All model/property files are available at: http://www.prismmodelchecker.org/files/sr13trust/

Kwiatkowska, Parker & Simaitis 55

made by a “requester” player model the decision of which provider is selected at each point in the
system execution. In the basic model, the “provider” players do not have any choices to make; later (in
Sections 3.2 and 3.3), we will add choices for these players in order to synthesise strategies that can be
used to improve the cooperation mechanism. The stochastic aspects of the SMG model are primarily
required to model the fact that negotiations fail probabilistically.

We adopt the same basic network configuration as used in the original analysis of the protocol [1],
which comprises 3 providers and 1 requester. Even though this network is relatively small, it still cap-
tures the fundamental aspects of the protocol. For instance, observe that the decision whether to provide
a service to a requester does not depend on the trust level of other requesters in the network, so incor-
porating more requesters does not offer any more information about the dynamics of trust and provided
services. On the other hand, as we will show, using three service providers already allows us to identify
malicious strategies for the requester that can be generalised to an arbitrary number of providers (see,
e.g., the discussion about the number of unpaid requests in Section 3.1).

The parameters of the cooperation mechanism are also taken from [1] and are as follows. The trust
measure is an integer in the range 0 to 10 and is initially 5. We use α=0.8 to compute trust levels, unless
stated otherwise, and the service trust threshold sti is set to 5 for all providers. We use a negotiation
failure probability of ci=0.05 for all providers i, and the parameters used to compute prices are fixed at
Cmin=2,Cmax=10 and T ′=8.

3 A Strategy-based Analysis

We now analyse the cooperation model described above, showing how the interplay between the two key
components of the protocol, trust and virtual currency, affects the cooperation dynamics. Our analysis is
based on strategy synthesis for properties in the temporal logic rPATL [4]. The logic combines features of
the multi-agent logic ATL, the probabilistic logic PCTL, and operators to reason about expected reward
or cost measures. A simple example of an rPATL formula is 〈〈{1,2}〉〉P≥0.75[F

≤5goal], which asks “do
players 1 and 2 have a (combined) strategy to ensure that the probability of reaching a ‘goal’ state within
5 steps is at least 0.75, regardless of the strategies of other players in the game?”. Alternatively, we can
use a numerical query such as 〈〈{1,2}〉〉Pmax=?[F

≤5goal]: “what is the maximum probability of reaching
a ‘goal’ state within 5 steps that can be ensured by players 1 and 2?”. An example of property to reason
about rewards (or costs) is 〈〈{3}〉〉Rr

≤10[F
?goal], which asks “does player 3 have a strategy to ensure

that the expected amount of reward r cumulated before reaching a ‘goal’ state is at most 10?”. The ?
parameter lets us specify what the total reward should be if a ‘goal’ state is not reached: we can assign
zero reward (?=0), infinite reward (?=∞) or allow reward to accumulate indefinitely (?=c). For precise
details of the logic rPATL and its semantics, we refer the reader to [4].

3.1 Unpaid requests

First, we consider the extent to which the requester can obtain services without paying for them. We
analyse the maximum (expected) number of unpaid services that the requester can obtain if its goal is to
get k services in total. This is expressed in rPATL as:

〈〈{requester}〉〉Runpaid
max=?[F

cservices=k],

where unpaid denotes a reward structure assigning 1 to every unpaid request. The results for various
combinations of model parameters α and tdi are shown in Figure 1 (we use 0.5/2 to indicate that α = 0.5

56 Strategic Analysis of Trust Models for User-Centric Networks

and trust is decreased by tdi = 2 units upon an unpaid service; tdi = inf means that trust is reset to 0 upon
an unpaid service).

Graph 1

Page 1

Number of services0.5/2 0.8/1 0.8/2 0.8/inf
1 1 1 1 1
2 1 1 1 1
2 1 1 1 1
3 1 1 1 1
3 1 2 2 1
4 1 2 2 1
4 2 3 2 2
5 2 3 2 2
5 3 3 3 2
6 3 3 3 2
6 3 4 3 3
7 3 4 3 3
7 3 4 4 3
8 3 4 4 3
8 4 5 4 3
9 4 5 4 3
9 4 5 4 3

10 4 5 4 3
10 5 6 5 3
11 5 6 5 3
11 5 7 5 3
12 5 7 5 3
12 6 7 6 3
13 6 7 6 3
13 7 8 6 3
14 7 8 6 3
14 8 8 6 3
15 8 8 6 3
15 9 9 7 3
16 9 9 7 3
16 10 9 7 3
17 10 9 7 3
17 11 10 7 3
18 11 10 7 3
18 12 10 8 3
19 12 10 8 3
19 13 11 8 3
20 13 11 8 3
20 14 11 8 3

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

0.5/2 0.8/1 0.8/2 0.8/inf

k

U
n

pa
id

 s
e

rv
ic

e
s

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5/2 0.8/1 0.8/2 0.8/in f

k

F
ra

ct
io

n
 o

f u
n

pa
id

 s
e

rv
ic

e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

9

10

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

(a) Number of unpaid services.

Graph 1

Page 1

Number of services0.5/2 0.8/1 0.8/2 0.8/inf
1 1 1 1 1
2 1 1 1 1
2 1 1 1 1
3 1 1 1 1
3 1 2 2 1
4 1 2 2 1
4 2 3 2 2
5 2 3 2 2
5 3 3 3 2
6 3 3 3 2
6 3 4 3 3
7 3 4 3 3
7 3 4 4 3
8 3 4 4 3
8 4 5 4 3
9 4 5 4 3
9 4 5 4 3

10 4 5 4 3
10 5 6 5 3
11 5 6 5 3
11 5 7 5 3
12 5 7 5 3
12 6 7 6 3
13 6 7 6 3
13 7 8 6 3
14 7 8 6 3
14 8 8 6 3
15 8 8 6 3
15 9 9 7 3
16 9 9 7 3
16 10 9 7 3
17 10 9 7 3
17 11 10 7 3
18 11 10 7 3
18 12 10 8 3
19 12 10 8 3
19 13 11 8 3
20 13 11 8 3
20 14 11 8 3

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

0.5/2 0.8/1 0.8/2 0.8/inf

k

U
n

pa
id

 s
e

rv
ic

e
s

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5/2 0.8/1 0.8/2 0.8/in f

k
F

ra
ct

io
n

 o
f u

n
pa

id
 s

e
rv

ic
e

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

9

10

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid(b) Fraction of unpaid services.

Graph 1

Page 1

Number of services0.5/2 0.8/1 0.8/2 0.8/inf
1 1 1 1 1
2 1 1 1 1
2 1 1 1 1
3 1 1 1 1
3 1 2 2 1
4 1 2 2 1
4 2 3 2 2
5 2 3 2 2
5 3 3 3 2
6 3 3 3 2
6 3 4 3 3
7 3 4 3 3
7 3 4 4 3
8 3 4 4 3
8 4 5 4 3
9 4 5 4 3
9 4 5 4 3

10 4 5 4 3
10 5 6 5 3
11 5 6 5 3
11 5 7 5 3
12 5 7 5 3
12 6 7 6 3
13 6 7 6 3
13 7 8 6 3
14 7 8 6 3
14 8 8 6 3
15 8 8 6 3
15 9 9 7 3
16 9 9 7 3
16 10 9 7 3
17 10 9 7 3
17 11 10 7 3
18 11 10 7 3
18 12 10 8 3
19 12 10 8 3
19 13 11 8 3
20 13 11 8 3
20 14 11 8 3

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

0.5/2 0.8/1 0.8/2 0.8/inf

k

U
n

pa
id

 s
e

rv
ic

e
s

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5/2 0.8/1 0.8/2 0.8/in f

k

F
ra

ct
io

n
 o

f u
n

pa
id

 s
e

rv
ic

e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

9

10

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

(c) Strategy for 0.5/2 and k = 13.

Figure 1: Maximum unpaid services the requester can achieve in obtaining k services.

Figures 1a and 1b show the number and fraction, respectively, of services that are unpaid, for a
range of k. From Figure 1b, in particular, we see that, for parameters 0.5/2 and 0.8/inf , the behaviour is
fundamentally different from the other two - the portion of requests converges to 1 and 0, respectively.
For 0.8/inf , this behaviour is expected, because the trust measure is decreased to 0 upon non-payment;
however, the behaviour of 0.5/2 represents an attack on the trust model allowing the requester to receive
an unlimited number of unpaid services for a fixed cost. We synthesise an attacker (requester) strategy
for our model with 3 providers, for the case of acquiring k = 13 services: for a cost of 5 services,
the requester can get an unlimited number of unpaid services. We depict the strategy in Figure 1c.
Arrows represent “request-and-pay” (white arrow) and “request-and-do-not-pay” (grey arrow) actions of
the optimal requester strategy, depending on the number of services acquired so far.

This attack is possible if sti ≤ (1−α) ·Tmax for some provider i, where Tmax is the maximum trust
level among all providers. We note that it is only viable if the network is sufficiently small since the
fixed cost increases with the number of providers sharing the trust information: to achieve the required
indirect trust measure recsi j ≥ sti

1−α , the requester must pay for a number of services proportional to the
number of providers. However, in order to work, this requires that all providers share their initial direct
trust measure even though they have not encountered the requester.

3.2 Cost of obtaining services

We now turn our attention to the virtual currency system, and study the minimum price at which the
requester can buy k services. For this, we use rPATL formula:

〈〈{requester}〉〉Rcost
min=?[F

∞services=k].

Intuitively, the requester has a strategy to get one unpaid service for each paid service by executing the
following sequence: pay, not pay, pay, not pay, etc. However, a plot of the above property (see highlighted
sections of line ‘Original’ in Figure 2a), shows deviations from this pattern, where the requester can get
4 services for the price of 2 and, similarly, 11 services for the price of 9.

We synthesise a strategy achieving this and depict it in Figure 2b. We can see that all paid requests are
directed to one provider and the others only receive unpaid requests. In fact, by exploiting the reputation
system, the requester is even able to obtain 2 unpaid requests from provider 2.

Kwiatkowska, Parker & Simaitis 57

Graph 2

Page 4

k Original
1 0 0
2 4 4
3 4 4
4 4 7
5 7 7
6 7 9
7 9 9
8 9 11
9 11 11

10 11 13
11 11 13
12 13 15
13 13 15
14 15 17
15 15 17
16 17 19
17 17 19
18 19 21
19 19 21
20 21 23

k Result
1 4.317434164428714E-14
2 4
3 4
4 7
5 7
6 9
7 9
8 11
9 11

10 13
11 13
12 15
13 15
14 17
15 17
16 19
17 19
18 21
19 21
20 23

Optimal/Heur.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

2

3

4

5

6

7

8

9

10

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

Orig inal Optimal/Heur.

k

M
in

im
u

m
 to

ta
l c

o
st

(a) Minimum cost to obtain k services.

Graph 2

Page 4

k Original
1 0 0
2 4 4
3 4 4
4 4 7
5 7 7
6 7 9
7 9 9
8 9 11
9 11 11

10 11 13
11 11 13
12 13 15
13 13 15
14 15 17
15 15 17
16 17 19
17 17 19
18 19 21
19 19 21
20 21 23

k Result
1 4.317434164428714E-14
2 4
3 4
4 7
5 7
6 9
7 9
8 11
9 11

10 13
11 13
12 15
13 15
14 17
15 17
16 19
17 19
18 21
19 21
20 23

Optimal/Heur.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

2

3

4

5

6

7

8

9

10

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

Orig inal Optimal/Heur.

k

M
in

im
u

m
 to

ta
l c

o
st

(b) Example strategy for k = 13.

Figure 2: Cost of k services for requester and a strategy example.

Next, we devise a fix by changing the model to allow providers to manage the way they share trust in-
formation between themselves: they can choose whether to share trust information after interaction with
the requester. We synthesise the optimal trust information sharing strategy for cooperating providers,
whose behaviour is shown as ‘Optimal/Heur.’ in Figure 2a and can be seen to avoid the above shortfall.
Manual examination of the synthesised strategy reveals a suitable heuristic whereby providers share trust
information only when its direct trust of the requester is smaller than that of the others. We implement
this heuristic in the model and find that it yields the same model checking results as the optimal strategy.

3.3 Provider selection incentives

Another interesting feature revealed by the analysis of the strategy in the previous section is that the
proposed virtual currency system provides an incentive for the requester to only ever pay for services
from one provider (see Figure 3a). This is in fact optimal behaviour because, in the computation of
the service cost, only the direct trust measure is used. This may or may not be a desired feature for
the mechanism. We can show that a simple change that incorporates the maximum difference between
trust into the pricing model (i.e., cost is now computed as original cost +maxk |trusti j− trustk j|, where
original cost is the cost assigned by the pricing scheme from Section 2.1) incentivises the requester to
disperse its requests between service providers.

Figure 3b shows the distribution of requests between providers and Figure 3c depicts the actions of
the optimal strategy in the new pricing scheme. This strategy contrasts with the strategy for the original
mechanism from Figure 2b because paid requests are now distributed uniformly across all the service
providers. This analysis of strategies has been performed using the “strategy implementation” feature of
PRISM-games, which allows the user to synthesise an optimal player strategy for some rPATL formula,
and then evaluate a second rPATL property on the modified SMG in which one coalition’s strategy is
fixed using the previously synthesised one. In this instance, we used the following rPATL formulae:

〈〈{requester}〉〉Rcost
min=?[F

∞services=k] and 〈〈 /0〉〉Rr
min=?[F

cservices=k],

where the first formula was used to synthesise the strategy and the second formula is the one used to
analyse it (r represents reward structures for Received, Paid, and Unpaid).

58 Strategic Analysis of Trust Models for User-Centric Networks

Graph 3

Page 7

Original
Provider 1 Provider 2 Provider 3

Received 17.89 2.11 1.05
Paid 9 0 0
Unpaid 8 2 1

Cost 2
Provider 1 Provider 2 Provider 3

Received 7.37 7.37 6.32
Paid 3 3 3
Unpaid 4 4 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

3

4

5

6

7

8

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

Received Paid Unpaid

0

5

10

15

20
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

Received Paid Unpaid

0

2

4

6

8
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

(a) Original pricing scheme.

Graph 3

Page 7

Original
Provider 1 Provider 2 Provider 3

Received 17.89 2.11 1.05
Paid 9 0 0
Unpaid 8 2 1

Cost 2
Provider 1 Provider 2 Provider 3

Received 7.37 7.37 6.32
Paid 3 3 3
Unpaid 4 4 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

3

4

5

6

7

8

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

Received Paid Unpaid

0

5

10

15

20
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

Received Paid Unpaid

0

2

4

6

8
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

(b) Modified pricing scheme.

Graph 3

Page 7

Original
Provider 1 Provider 2 Provider 3

Received 17.89 2.11 1.05
Paid 9 0 0
Unpaid 8 2 1

Cost 2
Provider 1 Provider 2 Provider 3

Received 7.37 7.37 6.32
Paid 3 3 3
Unpaid 4 4 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

3

4

5

6

7

8

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

Received Paid Unpaid

0

5

10

15

20
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

Received Paid Unpaid

0

2

4

6

8
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

(c) Optimal strategy for 13 services.

Figure 3: Distribution of requests among providers.

4 Discussion and future work

We have presented a strategy-based analysis of a cooperation mechanism for user-centric networks, using
automated verification of stochastic multiplayer games. We have identified several undesirable properties
of the model, including attacks on the reputation system and inefficiencies of the virtual currency mech-
anism. These would have been difficult to discover using conventional model checking. Furthermore,
we have shown that an analysis of optimal strategies for the model can help us understand the incentives
that the model introduces to the system and to devise and verify improvements.

Our approach, which is based on probabilistic model checking, builds and analyses a more detailed
system model than other game-theoretic analysis techniques, such as [7]. On the one hand, this may
impose limitations on the scalability of our approach. On the other hand, we are able to look at the
protocol in fine detail and, as we have shown in this paper, identify subtle problems that arise even with
a small number of system components, but which may also generalise to larger models.

There are many interesting directions for future work. We plan to further develop our probabilistic
model checker PRISM-games to provide a wider range of analysis techniques. For example, we plan
to incorporate additional reward operators dealing with limit averages and discounted sums. We would
also like to investigate extensions of our techniques to incorporate partial-information strategies or more
complex solution concepts such as Nash and subgame-perfect equilibria.

Acknowledgments. The authors are part supported by ERC Advanced Grant VERIWARE, the Institute
for the Future of Computing at the Oxford Martin School and EPSRC grant EP/F001096/1.

References

[1] A. Aldini & A. Bogliolo (2012): Model Checking of Trust-Based User-Centric Cooperative Networks. In:
Proc. 4th International Conference on Advances in Future Internet (AFIN’12), pp. 32–41.

[2] A. Aldini & A. Bogliolo (2012): Trading Performance and Cooperation Incentives in User-Centric Networks.
In: Proc. International Workshop on Quantitative Aspects in Security Assurance (QASA’12).

[3] A. Bogliolo, P. Polidori, A. Aldini, W. Moreira, P. Mendes, M. Yildiz, C. Ballester & J. Seigneur (2012):
Virtual Currency and Reputation-based Cooperation Incentives in User-Centric Networks. In: Proc. 8th
International Wireless Communications and Mobile Computing Conference (IWCMC’12), pp. 895 –900,
doi:10.1109/IWCMC.2012.6314323.

Kwiatkowska, Parker & Simaitis 59

[4] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker & A. Simaitis (2013): Automatic Verification of Competitive
Stochastic Systems. Formal Methods in System Design. To appear.

[5] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker & A. Simaitis (2013): PRISM-games: A Model Checker for
Stochastic Multi-Player Games. In: Proc. 19th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’13), LNCS 7795, Springer, pp. 187–193.

[6] M. Felegyhazi, J.-P. Hubaux & L. Buttyan (2006): Nash equilibria of packet forwarding strategies in wireless
ad hoc networks. Mobile Computing, IEEE Transactions on 5(5), pp. 463 – 476, doi:10.1109/TMC.2006.68.

[7] Z. Li & H. Shen (2012): Game-Theoretic Analysis of Cooperation Incentive Strategies in Mobile Ad Hoc
Networks. IEEE Transactions on Mobile Computing 11(8), pp. 1287 –1303, doi:10.1109/TMC.2011.151.

[8] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya & Q. Wu (2010): A Survey of Game Theory as Applied
to Network Security. In: Proc. 43rd Hawaii International Conference on System Sciences (HICSS’10), pp. 1
–10, doi:10.1109/HICSS.2010.35.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 61–69, doi:10.4204/EPTCS.112.11

c© T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak & E. Parmann

Concurrent Game Structures with Roles∗

Truls Pedersen† Sjur Dyrkolbotn‡ Piotr Kaźmierczak§ Erik Parmann¶

In the following paper we present a new semantics for the well-known strategic logic ATL. It is based
on adding roles to concurrent game structures, that is at every state, each agent belongs to exactly
one role, and the role specifies what actions are available to him at that state. We show advantages
of the new semantics, provide motivating examples based on sensor networks, and analyze model
checking complexity.

1 Introduction

ATL [1] is not only a highly-expressive and powerful strategic logic, but also has a relatively low (poly-
nomial) model checking complexity. However, as investigated by Jamroga and Dix [5], in order for the
complexity to be polynomial, the number of agents must be fixed. If the number of agents is taken as
a parameter, model checking ATL is ∆P

2 -complete or ∆P
3 -complete depending on model representation

[6]. Also, van der Hoek, Lomuscio and Wooldridge show in [3] that the complexity of model checking
is polynomial only if an explicit enumeration of all components of the model is assumed. For models
represented in reactive modules language (RML) complexity of model checking for ATL becomes as hard
as the satisfiability problem for this logic, namely EXPTIME [3].

We present an alternative semantics that interprets formulas of ordinary ATL over concurrent game
structures with roles. Such structures introduce an extra element – a set R of roles and associates each
agent with exactly one role which are considered homogeneous in the sense that all consequences of the
actions of the agents belonging to the topical role is captured by considering only the number of “votes”
an action gets (one vote per agent).

We present the revised formalism for ATL in Section 2, discuss model checking results in Section 3
and conclude in Section 4.

2 Role-based semantics for ATL

In this section we will introduce concurrent game structures with roles (RCGS), illustrate them with an
example and show in Theorem 1 that treating RCGS or CGS as the semantics of ATL are equivalent.

We will very often refer to sets of natural numbers from 1 to some number n ≥ 1. To simplify the
reference to such sets we introduce the notation [n] = {1, . . . ,n}. Furthermore we will let AB denote the
set of functions from B to A. We will often also work with tuples v = 〈v1, . . . ,vn〉 and view v as a function
with domain [n] and write v(i) for vi. Given a function f : A×B→C and a ∈ A, we will use fa to denote
the function B→C defined by fa(b) = f (a,b) for all b ∈ B.

∗A preliminary version of this paper was presented during LAMAS workshop held at AAMAS on June 4th 2012, and a talk
based on that version was given at LBP workshop during ESSLLI summer school, August 2012. It is available on arXiv [2].

†Dept. of Information Science and Media Studies, University of Bergen, Norway. truls.pedersen@infomedia.uib.no
‡Durham Law School, Durham University, UK. s.k.dyrkolbotn@durham.ac.uk
§Dept. of Computing, Mathematics and Physics, Bergen University College, Norway. phk@hib.no
¶Dept. of Informatics, University Bergen, Norway. erik.parmann@ii.uib.no

62 Concurrent Game Structures with Roles

Definition 1. An RCGS is a tuple H = 〈A ,R,R,Q,Π,π,A,δ 〉 where:

• A is a non-empty set of players. In this text we assume A = [n] for some n ∈ N, and we reserve n
to mean the number of agents.

• Q is the non-empty set of states.

• R is a non-empty set of roles. In this text we assume R = [i] for some i ∈ N.

• R : Q×A → R. For a coalition A we write Ar,q to denote the agents in A which belong to role r
at q, and notably Ar,q are all the agents in role r at q.

• Π is a set of propositional letters and π : Q→℘(Π) maps each state to the set of propositions true
in it.

• A : Q×R→ N+ is the number of available actions in a given state for a given role.

• For A = [n], we say that the set of complete votes for a role r in a state q is Vr(q) = {vr,q ∈
[n][A(q,r)] |∑1≤a≤A(q,r) vr,q(a)= |Ar,q|}, the set of functions from the available actions to the number
of agents performing the action. The functions in this set account for the actions of all the agents.
The set of complete profiles at q is P(q) = ∏r∈RVr(q). For each q ∈ Q we have a transition
function at q, δq : P(q)→ Q defining a partial function δ : Q×⋃q∈Q P(q)→ Q such that for all
q ∈ Q, P ∈ P(q), δ (q,P) = δq(P).

The following example illustrates how RCGS differs from an ordinary concurrent game structure:

Example 1 (Sensor networks). A wireless sensor network is a system composed of a number of (homo-
geneous) sensors that can be triggered by various stimuli. In Figure 1 we show a 1-tier (i.e., completely
homogeneous) sensor network with n sensors. There are two states in the system with labels correspond-
ing to an indicator of the network. ¬p stands for idle state of the network, while p indicates that the
network detected a stimulus. In this very simple example we say that k is our threshold, i.e. if at least
k number of sensors detect something, then p. Since all the sensors behave in the same way we say the
role of sensors is homogeneous. Hence the system can be modeled using only a single role. This gives
us the model depicted in Figure 1. One can easily add another role to the model if needed, for example
in a scenario with a “controller” who processes the reported signals, or in a 2-tier network with several
types of sensors.

¬p p

q0 q1

h(k0, n� k0)i

h(n, 0)i

h(k + 1, n� k � 1)i
h(k, n� k)i

h(n)i

Figure 1: A depiction of H1 – a simple 1-tier sensor network.

A more complex example is presented in Figure 2, where we add another role to our structure, that
of a supervisor or controller. The supervisor can act upon sensors’ actions, i.e. if the sensors report
that p, the supervisor can perform q. As illustrated by the drawing, the supervisor has three actions
available: he can wait, he can reject the message or he can accept the message and proceed to state
q2 performing q (e.g., call the police in an intrusion detection scenario). Finally, in Figure 3 we sketch

T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak & E. Parmann 63

ph(k, n� k), 1i
hn, (1, 0, 0)i

hn,
(0
, 0
, 1
)ihn, 1i

hn, (0, 1, 0)ih(k0, n� k0), 1i

p, q

h(k + 1, n� k � 1), 1i

h(n, 0), 1i

q0 q1

q2

Figure 2: A sketch of structure H2: a 1-tier sensor network with a supervisor.

a multi-tier example, with two different types of sensors, n1 and n2, each type with its corresponding role.
The transition function with the addition of a new role looks like this:

δq0(〈(x1,n1− x1),(x2,n2− x2)〉) =
{

q1, x1 ≥ t1∧ x2 ≥ t2
q0, otherwise

δq1(〈n1,n2〉) = q0

where t1,t2 are thresholds set according to significance of the sensors.

¬p p

h(t1, n1 � t1), (t2, n2 � t2)i

q0 q1

Figure 3: A sketch of structure H3: a multi-tier sensor network example.

These simple structures show the benefit of using roles when modelling scenarios which involve
a high degree of homogeneity among agents. In this simplified sensor setting a sensor either signals
that he has made a relevant observation or he does not – a binary choice. If modelled using concurrent
game structures without roles, models would have 2n number of possible action profiles in state q0, since
the identity of the agents signaling that they have made an observation has to be accounted for. This,
however, is irrelevant for the high-level protocol – all that matters is how many sensors of a given type
signal that they have made an observation. With roles we can exploit this, and we only need to account
for the genuinely different scenarios that can occur – corresponding to the number of sensors of each
type that decide to signal that they have made an observation. In the case of just a single role, this
means that we get n as opposed to 2n number of different profiles, and the size of the model goes from
exponential to linear in the number of sensors. In general, as we will show in Section 3, we shift the
exponential dependence in the size of models from the number of agents to the number of roles.

Given a role r, a state q and a coalition A, the set of A-votes for r at q is Vr(q,A), defined as:

Vr(q,A) =

{
v ∈ [|Ar,q|][A(q,r)]

∣∣∣∣∣ ∑
a∈[A(q,r)]

v(a) = |Ar,q|
}
.

64 Concurrent Game Structures with Roles

The A-votes for r at q give the possible ways agents in A that are in role r at q can vote. Given a state q
and a coalition A, we define the set of A-profiles at q:

P(q,A) = {〈v1, . . . ,v|R|〉 | 1≤ i≤ |R| : vi ∈Vr(q,A)}.

For any v∈Vr(q,A) and w∈Vr(q,B) we write v≤w iff for all i∈ [A(q,r)] we have v(i)≤w(i). If v≤w,
we say that w extends v. If F = 〈v1, . . . ,vR〉 ∈ P(q,A) and F ′ = 〈v′1, . . . ,v′R〉 ∈ P(q,B) with vi ≤ v′i for
every 1 ≤ i ≤ |R|, we say that F ≤ F ′ and that F extends F ′. Given a (partial) profile F ′ at a state q we
write ext(q,F) for the set of all complete profiles that extend F ′.

Given two states q,q′ ∈ Q, we say that q′ is a successor of q if there is some F ∈ P(q) such that
δ (q,F) = q′. A computation is an infinite sequence λ = q0q1 . . . of states such that for all positions
i ≥ 0, qi+1 is a successor of qi. We follow standard abbreviations, hence a q-computation denotes a
computation starting at q, and λ [i], λ [0, i] and λ [i,∞] denote the i-th state, the finite prefix q0q1 . . .qi

and the infinite suffix qiqi+1 . . . of λ for any computation λ and its position i ≥ 0, respectively. An A-
strategy for A ⊆A is a function sA : Q→ ⋃

q∈Q P(q,A) such that sA(q) ∈ P(q,A) for all q ∈ Q. That is,
sA maps states to A-profiles at that state. The set of all A-strategies is denoted by strat(A). When needed
to distinguish between different structures we write strat(S,A) to indicate that we are talking about the
set of strategies for A in structure S. If s is an A -strategy and we apply δq to s(q), we obtain a unique
new state q′ = δq(s(q)). Iterating, we get the induced computation λs,q = q0q1 . . . such that q = q0 and
∀i ≥ 0 : δqi(s(qi)) = qi+1. Given two strategies s and s′, we say that s≤ s′ iff ∀q∈Q : s(q)≤ s′(q). Given
an A-strategy sA and a state q we get an associated set of computations out(sA,q). This is the set of all
computations that can result when at any state, the players in A are voting/acting in the way specified by
sA, that is out(sA,q) = {λs,q | s is an A -strategy and s≥ sA}.

Given the definitions above, we can interpret ATL formulas in the following manner, leaving out the
propositional cases and abbreviations:

Definition 2. Given a RCGS S and a state q in S, we define the satisfaction relation |= inductively:

• S,q |= 〈〈A〉〉©φ iff there is sA ∈ strat(A) such that for all λ ∈ out(sA,q), we have S,λ [1] |= φ

• S,q |= 〈〈A〉〉φU φ ′ iff there is sA ∈ strat(A) such that for all λ ∈ out(sA,q) we have S,λ [i] |= φ ′ and
S,λ [j] |= φ for some i≥ 0 and for all 0≤ j < i

Towards the statement that interpreting formulas over CGS and RCGS is equivalent (Theorem 1) we
will describe a surjective translation function f translating each RCGS to a CGS. The following two
lemmas will be useful in formulating the proof of Theorem 1.

The translation function f from RCGS to CGS is defined as follows:

f 〈A ,R,R,Q,Π,π,A,δ 〉= 〈A ,Q,Π,π,d,δ ′〉

where:

da(q) = A(q,r) where a ∈R(q,r)

δ ′(q,α1, . . . ,αn) = δ (q,v1, . . . ,v|R|) where for each role r

vr = 〈|{i ∈R(q,r) | αi = 1}|, . . . , |{i ∈R(q,r) | αi = A(q,r)}|〉

We describe a surjective function m : strat(f (S))→ strat(S) mapping action tuples and strategies
of f (S) to profiles and strategies of S respectively. For all A ⊆ A and any action tuple for A at q,

T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak & E. Parmann 65

tq = 〈αa1 ,αa2 , ...,αa|A|〉 with 1 ≤ αai ≤ dai(q) for all 1 ≤ i ≤ |A|, the A-profile m(tq) is defined in the
following way:

m(tq) = 〈v(tq,1), . . . ,v(tq, |R|)〉 where for all 1≤ r ≤ |R| we have

v(tq,r) = 〈|{a ∈ Ar,q | αa = 1}|, . . . , |{a ∈ Ar,q | αa = A(q,r)}|〉

Lemma 1. For any RCGS S and any A⊆A , the function m : strat(f (S),A)→ strat(S,A) is surjective.

Proof. Let pA be some strategy for A in S. We must show there is a strategy sA in f (S) such that
m(sA) = pA. For all q∈Q, we must define sA(q) appropriately. Consider the profile pA(q) = 〈v1, . . . ,v|R|〉
and note that by definition of a profile, all vr for 1 ≤ r ≤ |R| are A-votes for r and that by definition of
an A-vote, we have ∑1≤i≤A(q,r) vr(i) = |Ar,q|. Also, for all agents a,a′ ∈ Ar,q we know, by definition of f ,
that da(q) = da′(q) = A(q,r).

It follows that there are functions α : A→ N+ such that for all a ∈ A, α(a) ∈ [da(q)] and |{a ∈ Ar,q |
α(a) = i}|= vr(i) for all 1≤ i≤ A(q,r), i.e.

vr = 〈|{a ∈ Ar,q|α(a) = 1}|, . . . , |{a ∈ Ar,q|α(a) = A(q,r)}|〉

We choose some such α and sA = 〈α(a1), . . . ,α(a|A|)〉. Having defined sA in this way, it is clear that
m(sA) = pA.

It will be useful to have access to the set of states that can result in the next step when A⊆A follows
strategy sA at state q, succ(q,sA) = {q′ ∈ Q | ∃F ∈ ext(q,sA) : δ (q,F) = q′}. Given either a CGS or an
RCGS S, we define the set of sets of states that a coalition A can enforce in the next state of the game:

f orce(S,q,A) = {succ(q,sA) | sA is a strategy for A in S}.

Using the surjective function m we can prove the following lemma, showing that the “next time”
strength of any coalition A is the same in S as it is in f (S).

Lemma 2. For any RCGS S, and state q ∈ Q and any coalition A ⊆ A , we have f orce(S,A,q) =
f orce(f (S),A,q).

Proof. By definition of f orce and Lemma 1 it is sufficient to show that for all sA ∈ strat(f (S),A), we
have succ(S,m(sA),q) = succ(f (S),sA,q). We show ⊆ as follows: Assume that q′ ∈ f orce(S,m(sA),q).
Then there is some complete profile P = 〈v1, . . . ,v|R|〉, extending m(sA)(q), such that δ (q,P) = q′. Let
m(sA)(q) = 〈w1, . . . ,w|R|〉 and form P′ = 〈v′1, . . . ,v′|R|〉 defined by v′i = vi−wi for all 1 ≤ i ≤ |R|. Then
each v′i is an (A \ A)-vote for role i, meaning that the sum of entries in the tuple v′i is |(A \ A)r,q|.
This means that we can define a function α : A → N+ such that for all a ∈ A , α(a) ∈ [da(q)] and
for all a ∈ A, α(a) = sa(q) and for every r ∈ R and every a ∈ (A \ A), and every 1 ≤ j ≤ A(q,r),
|{a ∈ (A \A)r,q | α(a) = j}| = v′r(j). Having defined α like this it follows by definition of m that for
all 1 ≤ j ≤ A(q,r), |{a ∈ Ar,q | α(a) = j}| = wr(j). Then for all r ∈ R and all 1 ≤ j ≤ A(q,r) we
have |{a ∈ Aq,r | α(a) = j}| = vr(j). By definition of f (S) it follows that q′ = δ (q,P) = δ ′(q,α) so
that q′ ∈ f orce(f (S),sA,q). We conclude that f orce(S, f (sA),q) ⊆ f orce(f (S),sA,q). The direction ⊇
follows easily from the definitions of m and f .

We now state and prove the equivalence.

Theorem 1. For any RCGS S, any φ and any q ∈ Q, we have S,q |= φ iff f (S),q |=CGS φ , where f is the
surjective model-translation function.

66 Concurrent Game Structures with Roles

Proof. Given a structure S, and a formula φ , we define true(S,φ) = {q ∈ Q | S,q |= φ}. Equivalence of
models S and f (S) is now demonstrated by showing that the equivalence in next time strength established
in Lemma 2 suffices to conclude that true(S,φ) = true(f (S),φ) for all φ .

We prove the theorem by showing that for all φ , we have true(S,φ) = true(f (S),φ). We use in-
duction on complexity of φ . The base case for atomic formulas and the inductive steps for Boolean
connectives are trivial, while the case of 〈〈A〉〉© φ is a straightforward application of Lemma 2. For
the cases of 〈〈A〉〉�φ and 〈〈A〉〉φU ψ we rely on the following fixed point characterizations, which are
well-known to hold for ATL, see for instance [4], and are also easily verified against definition 2:

〈〈A〉〉�φ ↔ φ ∧〈〈A〉〉©〈〈A〉〉�φ
〈〈A〉〉φ1U φ2↔ φ2∨ (φ1∧〈〈A〉〉©〈〈A〉〉φ1U φ2

(1)

We show the induction step for 〈〈A〉〉�φ , taking as induction hypothesis true(S,φ) = true(f (S),φ). The
first equivalence above identifies Q′ = true(S,〈〈A〉〉�φ) as the maximal subset of Q such that φ is true
at every state in Q′ and such that A can enforce a state in Q′ from every state in Q′, i.e. such that
∀q ∈ Q′ : ∃Q′′ ∈ f orce(q,A) : Q′′ ⊆ Q′. Notice that a unique such set always exists. This is clear since
the union of two sets satisfying the two requirements will itself satisfy them (possibly the empty set).
The first requirement, namely that φ is true at all states in Q′, holds for S iff if holds for f (S) by induction
hypothesis. Lemma 2 states f orce(S,q,A) = f orce(f (S),q,A), and this implies that also the second re-
quirement holds in S iff it holds in f (S). From this we conclude true(S,〈〈A〉〉�φ) = true(f (S),〈〈A〉〉�φ)
as desired. The case for 〈〈A〉〉φU ψ is similar, using the second equivalence.

Example 2 (Sensor networks contd.). To further illustrate the use of ATL interpreted over RCGS, we
provide example formulas that are related to the structures shown in Example 1.

In the structure depicted in Figure 1, if at least k sensors signal something, p becomes true (e.g. the
alarm is raised). This is expressed by formula 〈〈A〉〉© p which is satisfied in the structure from Figure 1,
i.e. H1,q0 � 〈〈A〉〉© p whenever |A∩R(q0,1)| ≥ k. In Figure 2, the supervisor decides whether signals
that indicate p are strong enough in order for him to signal q, e.g. raise the alarm. In this scenario, the
sensors alone cannot raise the alarm, hence H2,q0 6|= 〈〈A〉〉♦q whenever A∩R(q1,2) = /0 (which means
that whenever the coalition A does not include the supervisor, q cannot be enforced). On the other hand,
H2,q0 |= 〈〈A〉〉© 〈〈B〉〉© q whenever |A∩R(q0,1)| ≥ k and B∩R(q1,2) 6= /0 (which means that the
coalition of agents without a supervisor can enable the supervisor to take action).

3 Model checking and the size of models

In this section we will see how using roles can lead to a dramatic decrease in the size of ATL models.
We first investigate the size of models in terms of the number of roles, players and actions, and then we
analyze model checking of ATL over concurrent game structures with roles.

Given a set of numbers [a] and a number n, it is a well-known combinatorial fact that the number
of ways in which to choose n elements from [a], allowing repetitions, is (n+(a−1))!

n!(a−1)! . Furthermore, this
number satisfies the following two inequalities:1

(n+(a−1))!
n!(a−1)! ≤ an and (n+(a−1))!

n!(a−1)! ≤ na. (2)

1If this is not clear, remember that na and an are the number of functions [n][a] and [a][n] respectively. It should not be hard
to see that all ways in which to choose n elements from a induce non-intersecting sets of functions of both types.

T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak & E. Parmann 67

These two inequalities provide us with an upper bound on the size of RCGS models that makes it easy to
compare their sizes to that of CGS models. Typically, the size of concurrent game structures is dominated
by the size of the domain of the transition function. For an RCGS and a given state q ∈ Q this is the
number of complete profiles at q. To measure it, remember that every complete profile is an |R|-tuple of
votes vr, one for each role r ∈ R. Also remember that a vote vr for r ∈ R is an A(q,r)-tuple such that the
sum of entries is |Aq,r|. Equivalently, the vote vr can be seen as the number of ways in which we can
make |Aq,r| choices, allowing repetitions, from a set of A(q,r) alternatives. Looking at it this way, we
obtain:

|P(q)|= ∏
r∈R

(|Aq,r|+(A(q,r)−1))!
|Aq,r|!(A(q,r)−1))!

.

We sum over all q ∈ Q to obtain what we consider to be the size of an RCGS S. In light of Equation 2, it
follows that the size of S is upper bounded by both of the following expressions.

O(∑q∈Q ∏r∈R |Aq,r|A(q,r)) and O(∑q∈Q ∏r∈RA(q,r)|Aq,r|). (3)

We observe that growth in the size of models is polynomial in a=maxq∈Q,r∈RA(r,q) if n= |A | and |R| is
fixed, and polynomial in p = maxq∈Q,r∈R|Aq,r| if a and |R| are fixed. This identifies a significant potential
advantage arising from introducing roles to the semantics of ATL. The size of a CGS M, when measured
in the same way, replacing complete profiles at q by complete action tuples at q, grows exponentially in
the players whenever the players have more than one action. We stress that we are not just counting the
number of transitions in our models differently. We do have an additional parameter, the roles, but this is
a new semantic construct that gives rise to genuinely different semantic structures. We have established
that it is possible to use them to give the semantics of ATL, but this does not mean that there is not more
to be said about them. Particularly crucial is the question of model checking over RCGS models.

3.1 Model checking using roles

For ATL there is a well known model checking algorithm [1]. It does model checking in time linear in
the length of the formula and the size of the model. Given a structure S, and a formula φ , the standard
model checking algorithm mcheck(S,φ) returns the set of states of S where φ holds.

for F ∈ P(q,A) do
p← true
for F ′ ∈ ext(q,F) do

if δ (q,F ′) 6∈ Q′ then
p← f alse

if p = true then
return true

return f alse

Figure 4: en f orce(S,A,q,Q′)

The algorithm depends on a function en f orce(S,A,q,Q′),
which given a structure S, a coalition A, a state q ∈ Q and a
set of states Q′ answers true or false depending on whether
or not A can enforce Q′ from q. This is the only part of the
standard algorithm that needs to be modified to accommo-
date roles.

For all profiles F ∈ P(q,A) the en f orce algorithm runs
through all complete profiles F ′ ∈ P(q) that extend F . It is
polynomial in the number of complete profiles, since for any
coalition A and state q we have |P(q,A)| ≤ |P(q)|, meaning
that the complexity of en f orce is upper bounded by |P(q)|2.
Given a fixed length formula and a fixed number of states,
en f orce dominates the running time of mcheck. It follows that model checking of ATL over concurrent
game structures with roles is polynomial in the size of the model. We summarize this result.

Proposition 1. Given a CGS S and a formula φ , mcheck(S,φ) takes time O(le2) where l is the length of
φ and e = ∑

q∈Q
|P(q)| is the total number of transitions in S

68 Concurrent Game Structures with Roles

Since model checking ATL over CGSs takes only linear time, O(le), adding roles apparently makes
model checking harder. On the other hand, the size of CGS models can be bigger by an exponential
factor, making model checking much easier after adding roles. In light of the bounds we have on the size
of models, c.f. Equation 3, we find that as long as the roles and the actions remain fixed, complexity of
model checking is only polynomial in the number of agents. This is a potentially significant argument in
favor of including roles in the semantics.

Roles should be used at the modeling stage, as they give the modeler an opportunity for exploiting
homogeneity of the system under consideration. We think that it is reasonable to hypothesize that in
practice, most large scale multi-agent systems that lend themselves well to modeling by ATL exhibit
significant homogeneity.

The question arises as to whether or not using an RCGS is always the best choice, or if there are
situations when the losses incurred in the complexity of model checking outweigh the gains we make in
terms of the size of models. We conclude with the following proposition, also shown in [2], which states
that as long we use the standard algorithm, model checking any CGS M can be done at least as quickly
by model checking an arbitrary S ∈ f−(M).

Proposition 2. Given any CGS-model M and any formula φ , let c(mcheck(M,φ)) denote the complexity
of running mcheck(M,φ). We have, for all S ∈ f−(M), that complexity of running mcheck(S,φ) is
O(c(mcheck(M,φ))

Proof. It is clear that for any S∈ f−(M), running mcheck(S,φ) and mcheck(M,φ), a difference in overall
complexity can arise only from a difference in the complexity of en f orce. So we compare the complexity
of en f orce(S,A,q,Q′′) and en f orce(M,A,q,Q′′) for some arbitrary q ∈ Q, Q′′ ⊆ Q. The complexity in
both cases involves passing through all complete extensions of all strategies for A at q. The sizes of these
sets can be compared as follows, the first inequality is an instance of Equation 2 and the equalities follow
from definition of f and the fact that M = f (S).

∏
r∈R

(
(|Ar,q|+(A(r,q)−1))!
|Ar,q|!(A(r,q)−1)!

)
×∏

r∈R

(
((|Aq,r|− |Ar,q|)+(A(r,q)−1))!
(|Aq,r|− |Ar,q|)!(A(r,q)−1)!

)

≤
(

∏
r∈R

A(r,q)|Ar,q|×∏
r∈R

A(r,q)|Aq,r|−|Ar,q|
)

=∏
r∈R

(
∏

a∈Ar,q

A(r,q)

)
×∏

r∈R

(
∏

a∈Aa,r\Ar,q

A(r,q)

)

=

(
∏
a∈A

da(q)× ∏
a∈A \A

da(q)

)
= ∏

a∈A
da(q)

We started with the number of profiles (transitions) we need to inspect when running en f orce on S at q,
and ended with the number of action tuples (transitions) we need to inspect when running en f orce on
M = f (S). Since we showed the first to be smaller or equal to the latter and the execution of all other
elements of mcheck are identical between S and M, the claim follows.

T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak & E. Parmann 69

4 Conclusions, related and future work

In this paper we have described a new type of semantics for the strategic logic ATL. We have provided
illustrating examples and argued that although in principle model checking ATL interpreted over con-
current game structures with roles is harder than the standard approach, it is still polynomial and can
generate exponentially smaller models. We believe this provides evidence that concurrent game struc-
tures with roles are an interesting semantics for ATL, and should be investigated further.

Relating our work to ideas already present in the literature we find it somewhat similar to the idea
of exploiting symmetry in model checking, as investigated by Sistla and Godefroid [7]. However, our
approach is different, since we look at agent symmetries in ATL as the basis of a new semantics. When
it comes to work related directly to strategic logics, we find no similar ideas present, hence concluding
that our approach is indeed novel.

For future work we plan on investigating the homogeneous aspect of our ‘roles’ in more depth. We
are currently working on a derivative of ATL with a different language that will fully exploit the role
based semantics.

Acknowledgments: We thank Pål Grønås Drange, Valentin Goranko and Alessio Lomuscio for helpful
comments. Piotr Kaźmierczak’s work was supported by the Research Council of Norway project 194521
(FORMGRID).

References
[1] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. Journal of

the ACM (JACM) 49(5), pp. 672–713, doi:10.1145/585265.585270.
[2] Sjur Dyrkolbotn, Piotr Kaźmierczak, Erik Parmann & Truls Pedersen (2012): No big deal: introducing roles

to reduce the size of ATL models. Available at http://arxiv.org/abs/1204.3495.
[3] Wiebe van der Hoek, Alessio Lomuscio & Michael Wooldridge (2006): On the complexity of practical ATL

model checking. In: Proceedings of the fifth international joint conference on Autonomous agents and multia-
gent systems, ACM, pp. 201–208, doi:10.1145/1160633.1160665.

[4] Wojciech Jamroga (2009): Easy Yet Hard: Model Checking Strategies of Agents. In Michael Fisher, Fariba
Sadri & Michael Thielscher, editors: Computational Logic in Multi-Agent Systems, Springer-Verlag, pp. 1–
12, doi:10.1007/978-3-642-02734-5 1.

[5] Wojciech Jamroga & Jürgen Dix (2005): Do agents make model checking explode (computationally)? In
M. Pechoucek, P. Petta & L. Z. Varga, editors: Multi-Agent Systems and Applications IV (LNAI Volume
3690), doi:10.1007/11559221 40.

[6] François Laroussinie, Nicolas Markey & Ghassan Oreiby (2007): On the expressiveness and complexity of
ATL. In: Proceedings of the 10th International Conference on Foundations of Software Science and Compu-
tation Structures (FoSSaCS’07), volume 4423 of Lecture Notes in Computer Science, Springer, pp. 243–257,
doi:10.1007/978-3-540-71389-0 18.

[7] A. Prasad Sistla & Patrice Godefroid (2004): Symmetry and reduced symmetry in model checking. ACM
Trans. Program. Lang. Syst. 26(4), pp. 702–734, doi:10.1145/1011508.1011511.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 71–79, doi:10.4204/EPTCS.112.12

c© S. Busard, C. Pecheur, H. Qu, F. Raimondi
This work is licensed under the
Creative Commons Attribution License.

Reasoning about Strategies under Partial Observability
and Fairness Constraints

Simon Busard, Charles Pecheur∗

ICTEAM Institute,
Université catholique de Louvain,

Louvain-la-Neuve, Belgium

simon.busard@uclouvain.be

charles.pecheur@uclouvain.be

Hongyang Qu
Dept. of Computer Science,

University of Oxford,
Oxford, United Kingdom

Hongyang.Qu@cs.ox.ac.uk

Franco Raimondi
Dept. of Computer Science,

Middlesex University,
London, United Kingdom

f.raimondi@mdx.ac.uk

A number of extensions exist for Alternating-time TemporalLogic; some of these mix strategies and
partial observability but, to the best of our knowledge, no work provides a unified framework for
strategies, partial observability and fairness constraints. In this paper we proposeATLKF

po, a logic
mixing strategies under partial observability and epistemic properties of agents in a system with
fairness constraints on states, and we provide a model checking algorithm for it.

1 Introduction

A number of extensions exist for Alternating-time TemporalLogic; starting from [7], partial observability
has been investigated by many authors, see for instance [8] and references therein. But, to the best of
our knowledge, no work provides a unified framework for strategies, partial observability and fairness
constraints. For example, Jamroga and van der Hoek proposed, among other logics, ATOL, mixing
partial observability with strategies of agents [10]. Along the same lines, Schobbens studied ATLir [14],
seen as the minimal ATL-based logic for strategies under partial observability [9]. On the other hand,
some efforts have been made on bringing fairness to ATL. For instance the work of Alur et al. [1], or
the work of Klüppelholz and Baier [11] introduce the notionof fairness constraints on actions, asking
for an infinitely often enabled action to be taken infinitely often. For temporal and epistemic logics,
however, fairness conditions are normally provided onstates. Furthermore, it has been shown that (weak,
strong or unconditional) fairness constraints on actions,can be reduced to (weak, strong or unconditional,
respectively) fairness constraints on states (see [2], forinstance). In this paper we proposeATLKF

po, a
logic mixing strategies under partial observability and epistemic properties of agents in a system with
unconditional fairness constraintson states, and we provide a model checking algorithm for it.

To motivate the need for fairness constraints in ATL under partial observability, consider the simple
card game example in [10]. The game is played between a playerand a dealer. It uses three cards,A,
K andQ; A wins overK, K wins overQ and Q wins overA. First, the dealer gives one card to the
player, keeps one and leaves the last one on table. Then the player can keep his card or swap it with
the one on the table. The player wins if his card wins over the dealer’s card. Under ATLir semantics,
the player cannot win the game: he cannot distinguish between, for example,< A,K > and< A,Q >
(where< a,b > means ”player has carda, dealer has cardb”) and thus has to make the same action in
both states, with a different result in each case. Consider now a variation of this game: the game does
not terminate after the first round. Instead, if the player does not win, cards are redistributed. In this case,
too, the player cannot win the game: for instance, he will have to choose between keeping or swapping
cards in< A,K > and< A,Q>, so he won’t be able to enforce a win because the dealer (that chooses

∗This work is supported by the European Fund for Regional Development and by the Walloon Region.

72 Reasoning about Strategies under Partial Observability and Fairness Constraints

the given cards) can be unfair and always give the losing pair. But if we add one fairness constraint per
intermediate state—i.e. the states in which the player has to choose between swapping or keeping—the
player has a strategy to finally win the game. In this case, we only consider paths along which all fairness
constraints are met infinitely often: this situation corresponds to a fair dealer, giving the cards randomly.
The player can thus finally win because< A,K > will eventually happen—even if he cannot distinguish
it from < A,Q>—, so he knows a strategy to win at least a round: keeping his card.

Another example of application of fairness constraints in ATL is Multi-Agent Programs [5]. These
programs are composed of interleaved agent programs and fairness constraints are used to avoid unfair
interleaving. Dastani and Jamroga express fairness as formulae of the logic ATL* [5]; in this paper,
instead, we deal only with ATL and therefore fairness constraints cannot be expressed as formulae of the
logic. The situation is similar to the case of LTL versus CTL model checking: in the first case model
checking fairness is reduced to model checking a more complex formula using the same verification
algorithms; in the second case fairness is incorporated into bespoke verification algorithms. In our work
we chose ATL over ATL* because of complexity considerations(see Section 3).

The rest of the paper is structured as follows: Section 2 presents the syntax and semantics ofATLKF
po

and Section 3 presents two model checking algorithms for thelogic. Finally, Section 4 summarizes the
contribution and draws some future work.

2 Syntax and Semantics

This section presents the syntax and semantics ofATLKF
po, an extension of ATL with partial observability

under fairness constraints on states. An extension with full observability under the same fairness con-
straintsATLKF

f o is also presented because the model checking algorithm forATLKF
po relies on the one

for ATLKF
f o.

Syntax Both logics share the same syntax, composed of the standard Boolean connectors (∨, ∧, ¬,
etc.), CTL operators (EX, EU, EG, etc.) [4], knowledge operators (Kag, EΓ, DΓ, CΓ) [6] and strategic
operators (〈Γ〉X, 〈Γ〉G, 〈Γ〉U , 〈Γ〉W and their[Γ] counterparts) [1].

Models and notation ATLKF
f o andATLKF

po formulae are interpreted over modelsM = 〈Ag,S,Act,T, I ,
{∼i},V,F〉 where (1)Ag is a set ofn agents; (2)S=S1× ...×Sn is a set of global states, each of which is
composed ofn local states, one for each agent; (3)Act= Act1× ...×Actn is a set of joint actions, each of
which is composed ofn actions, one for each agent; (4)T ⊆ S×Act×S is a transition relation between
states inSand labelled with joint actions (we writes

a−→ s′ if (s,a,s′) ∈ T); (5) I ⊆ S is the a set of initial
states; (6){∼i} is a set of equivalence relations between states, and∼i partitions the set of states in terms
of knowledge of agenti—s∼i s′ iff si = s′i , i.e two states are indistinguishable for agenti if they share
the same local state fori; (7) V : S→ 2AP labels states with atomic propositions ofAP; (8) F ⊆ 2S is a
set of fairness constraints, each of which is a subset of states.

A joint actiona= (a1, ...,an) completesa partially joint actionaΓ = (a′i , ...,a
′
j) composed of actions

of agents inΓ ⊆ Ag—writtenaΓ ⊑ a—if actions ina for agents inΓ correspond to actions inaΓ. Further-
more, we define the functionimg : S×Act→ 2S asimg(s,a) = {s′ ∈ S|s a−→ s′}, i.e. img(s,a) is the set of
states reachable in one step froms througha.

A model M represents a non-deterministic system where each agent hasan imperfect information
about the current global state. One restriction is made onT: ∀s,s′ ∈ S,s∼i s′ =⇒ enabled(s, i) =
enabled(s′, i) whereenabled(s, i) = {ai ∈ Acti|∃s′ ∈ S,a ∈ Act s.t. (ai) ⊑ a∧ s

a−→ s′}. This means that

S. Busard, C. Pecheur, H. Qu, F. Raimondi 73

the actions an agent can perform in two epistemically equivalent states are the same. Theenabled
function is straightforwardly extended to groups of agents.

A path in a modelM is a sequenceπ = s0
a1−→ s1

a2−→ ... of elements ofT. We useπ(d) for sd. A
states is reachablein M if there exist a pathπ andd ≥ 0 such thatπ(0) ∈ I andπ(d) = s. A pathπ is
fair according to a set of fairness conditionsF = { f1, ..., fk} if for each fairness conditionf , there exist
infinitely many positionsd ≥ 0 such thatπ(d) ∈ f . A states is fair if there exists a fair path starting ats.

A strategyfor agenti is a functionfi : S→ Acti where, for any states, fi(s) ∈ enabled(s, i); a strategy
maps each state to an enabled action. We call these strategies global strategies. A uniform strategyfor
agenti is a global strategyfi where∀s,s′ ∈ S,s′ ∼i s =⇒ fi(s) = fi(s′), i.e. agenti cannot choose two
different actions for two indistinguishable states. Thestrategy outcomesfrom a states for a strategyfi,
denoted without(s, fi), is the set of paths a strategy can enforce, i.e.out(s, fi) = {π = s0

a1−→ s1...|s0 =
s∧∀d ≥ 0,sd+1 ∈ img(sd,ad+1)∧ (fi(sd))⊑ ad+1}. The definition of outcomes is naturally extended to
sets of strategies for a subset of agents.

Semantics The semantics of both logics are defined over states of a modelM by defining the relations
M,s |=F

f o φ andM,s |=F
po φ , for ATLKF

f o andATLKF
po, respectively.M can be omitted when clear from

the context. Both relations share a part of their semantics;we writes |=F φ if s |=F
f o φ ands |=F

po φ . The
s |=F

f o φ ands |=F
po φ relations are recursively defined over the structure ofφ and follow the standard

interpretation for most of the operators.s |=F p if p∈V(s); ∨ and¬ are interpreted in the natural way.
s |=F Kiφ if φ is true in all fair reachable states indistinguishable froms for agenti, s |=F EΓφ if all
agents inΓ know φ , s |=F DΓφ if, by putting all their knowledge in common, agents ofΓ would knowφ ,
ands |=F CΓφ if φ is common knowledge among agents ofΓ [6]. s |=F Eψ if there is a pathπ starting
at s satisfyingψ , π |=F Xφ if π(1) satisfiesφ , π |=F φ1Uφ2 if φ1 is true along the path untilφ2 is true,
π |= Gφ if φ is always true alongπ, andπ |= φ1Wφ2 if π |= (φ1Uφ2)∨Gφ1 [4].

The meaning of the〈Γ〉 operator is different in the two semantics:
(i) s |=F

f o 〈Γ〉ψ iff there exists a set ofglobal strategies fΓ, one for each agent inΓ, such that for allfair
paths π ∈ out(s, fΓ),π |=F ψ ;
(ii) s |=F

po 〈Γ〉ψ iff there exists a set ofuniform strategies fΓ, one for each agent inΓ, such that for all
s′ ∼Γ s, for all fair paths π ∈ out(s′, fΓ),π |=F ψ .

The[Γ] operator is the dual of〈Γ〉: s |=F [Γ]ψ iff s |=F ¬〈Γ〉¬ψ .

3 Model CheckingATLKF
f o and ATLKF

po

Model checkingATLKF
f o The model checking algorithm forATLKF

f o is defined by the functionJ.KF
f o :

ATLKF
f o → 2S returning the set of states of a given modelM satisfying a givenATLKF

f o property. This
function is defined in the standard way for Boolean connectors, CTL and knowledge operators [4, 13].
The [Γ] operators are evaluated as follows:

J[Γ]XφKF
f o = Pre[Γ](JφKF

f o∩Fair[Γ])

J[Γ]φ1Uφ2KF
f o = µZ.(Jφ2KF

f o∩Fair[Γ])∪ (Jφ1KF
f o∩Pre[Γ](Z))

J[Γ]GφKF
f o = νZ.JφKF

f o∩
⋂

f∈F

Pre[Γ](µY.(Z∩ f)∪ (JφKF
f o∩Pre[Γ](Y)))

J[Γ]φ1Wφ2KF
f o =

νZ.(Jφ2KF
f o∩Fair[Γ])

∪ (Jφ1KF
f o∩

⋂
f∈F Pre[Γ](µY.(Jφ2KF

f o∩Fair[Γ])∪ (Z∩ f)∪ (Jφ1KF
f o∩Pre[Γ](Y))))

74 Reasoning about Strategies under Partial Observability and Fairness Constraints

wherePre[Γ](Z) = {s|∀aΓ ∈ enabled(s,Γ),∃a s.t. aΓ ⊑ a∧ img(s,a)∩Z 6= /0} andFair[Γ] = J[Γ]G trueKF
f o.

µZ.τ(Z) and νZ.τ(Z) are the least and greatest fix points of functionτ(Z). Intuitively, thePre[Γ](Z)
operator returns the set of states in whichΓ cannot avoid to reach a state ofZ. Thus,J[Γ]GφKF

f o returns
the set of states in whichΓ cannot avoid a path of states ofJφKF

f o going through all fairness constraints
infinitely often;Fair[Γ] is the set of states in whichΓ cannot avoid a fair path. Note that the〈Γ〉 operators
can be computed using the[Γ] and¬ operators, but can also be computed directly using the dual forms
from the ones above. For exampleJ〈Γ〉GφKF

f o = νZ.(JφKF
f o∪Fair[Γ])∩Pre〈Γ〉(Z), wherePre〈Γ〉(Z) =

Pre[Γ](Z) = {s|∃aΓ ∈ enabled(s,Γ) such that∀a,aΓ ⊑ a =⇒ img(s,a) ⊆ Z}. Z ⊆ S is the complement
of the setZ ⊆ S.

The correctness of the model checking algorithm forATLKF
f o follows from Theorem 1.

Theorem 1. For all states s∈ S, s|=F
f o φ if and only if s∈ JφKF

f o.

Proof sketch.First, Reach[Γ](P1,P2) = µY.P2 ∪ (P1∩Pre[Γ](Y)) computes the set of states in whichΓ
cannot avoid a finite path of states ofP1 to a state ofP2. We can prove it by induction over the computation
of the least fix point. It is true by definition of the least fix point and thePre[Γ] operation.

Then, for the[Γ]Gφ operator,J[Γ]GφKF
f o = νZ.JφKF

f o∩
⋂

f∈F Pre[Γ](µY.(Z∩ f)∪(JφKF
f o∩Pre[Γ](Y)))

= νZ.JφKF
f o∩

⋂
f∈F Pre[Γ](Reach[Γ](JφKF

f o,Z∩ f)) computes the set of states in whichΓ cannot avoid a
fair path (i.e. going through eachf ∈ F infinitely often) that satisfiesGφ . We prove it by induction over
the computation of the greatest fix point and by using what hasbeen proved just above.

Thanks to this, we can easily prove thatFair[Γ] = J[Γ]GtrueKF
f o computes the set of states in whichΓ

cannot avoid a fair path (it is just a particular case of the[Γ]G operator).
Then,[Γ]X and[Γ]U operators compute the set of states in whichΓ cannot avoid a successor inJφKF

f o
in which Γ cannot avoid a fair path, respectively in whichΓ cannot avoid a finite path through states of
Jφ1KF

f o to a state ofJφ2KF
f o, in whichΓ cannot avoid a fair path. In particular, the proof for[Γ]U directly

follows from the proof forReach[Γ].
Finally, the proof for the[Γ]W operator is similar to the one for[Γ]G operator. The proof of correct-

ness of the algorithms for〈Γ〉 operators follows from the proof for[Γ] operators, the duality of these
operators and standard fix point properties.

Model checkingATLKF
po – basic algorithm A basic algorithm is presented in Algorithm 1. It relies

on the model checking algorithm forATLKF
f o. It uses two sub-algorithms:Split andJ.KF

f o|strat, where
strat is a strategy represented as a set of state/action pairs. Thelatter is a modified version of the
algorithm described in the previous section withPre〈Γ〉|strat replacingPre〈Γ〉 wherePre〈Γ〉|strat(Z) =
{s|∃aΓ ∈ enabled(s,Γ) such that〈s,aΓ〉 ∈ strat∧∀a,aΓ ⊑ a =⇒ img(s,a) ⊆ Z}, i.e., Pre〈Γ〉|strat(Z) is
Pre〈Γ〉(Z) restricted to states and actions allowed bystrat. Furthermore,J.KF

f o|strat recursively callsJ.KF
po

on sub-formulae, instead ofJ.KF
f o.

TheSplit algorithm is given in Algorithm 2.Split(S×ActΓ) returns the set of uniform strategies of
the system (a uniform strategy is represented by the action for groupΓ allowed in each state, and this
action needs to be the same for each state in the same equivalence class).

Intuitively, Algorithm 1 computes, for each possible uniform strategystrat, the set of states for which
the strategy is winning, and then keeps only the statess for which the strategy is winning for all states
equivalent tos.

Before proving the correctness of the basic algorithm, let’s prove the correctness of theSplit algo-
rithm.

S. Busard, C. Pecheur, H. Qu, F. Raimondi 75

Algorithm 1 : J〈Γ〉ψKF
po

Data: M a given (implicit) model,Γ a subset of agents ofM, ψ anATLKF
po path formula.

Result: The set of states ofM satisfying〈Γ〉ψ .

sat= {}
for strat∈ Split(S×ActΓ) do

winning= J〈Γ〉ψKF
f o|strat

sat= sat∪{s∈ winning|∀s′ ∼Γ s,s′ ∈ winning}
return sat

Algorithm 2 : Split(Strats)
Data: Strats⊆ S×ActΓ.
Result: The set of all the largest subsetsSAof Strats⊆ S×ActΓ such that no conflicts appear in

SA.

C = {〈s,aΓ〉 ∈ Strats|∃〈s′,a′Γ〉 ∈ Strats s.t. s′ ∼Γ s∧aΓ 6= a′Γ}
if C= /0 then return {Strats}
else

〈s,aΓ〉= pick one inC
E = {〈s′,a′Γ〉 ∈ Strats|s′ ∼Γ s}
A= {aΓ ∈ ActΓ|∃〈s,aΓ〉 ∈ E}
strats= {}
for aΓ ∈ A do

S= {〈s′,aΓ〉 ∈ E|a′Γ = aΓ}
strats= strats∪Split(S∪ (Strats\E))

return strats

Theorem 2. Split(Strats) computes the set of all the largest subsets SA of Strats⊆ S×ActΓ such that
no conflicts appear in SA.

Remark 1. A conflict appears in SA⊆ S×ActΓ if there exist two elements〈s,aΓ〉 and〈s′,a′Γ〉 in SA such
that s′ ∼Γ s and aΓ 6= a′Γ, i.e. there is a conflict if SA proposes two different actionsin two equivalent
states.

Proof sketch of Theorem 2. Splitgets all the conflicting elements ofStrats. If there are no such elements,
thenStratsis its own largest non-conflicting subset; otherwise,Split takes one conflicting equivalence
classE and, for each of its largest non-conflicting subsetsS—i.e. subsets of states using the same
action—it callsSplit on the rest ofStratsaugmented with the non-conflicting subsetS.

We can prove the correctness ofSplit by induction over the number of conflicting equivalence classes
of Strats. If Stratsdoes not contain any conflicting equivalence classes,Stratsis its own single largest
subset in which no conflicts appear. Otherwise, let’s assumethat Split(Starts\E) with E a conflicting
equivalence class ofStratsreturns the set of all the largest non-conflicting subsets ofStrats\E; then, by
what has been explained above,Split returns the cartesian product between all the largest non-conflicting
subsets ofE and all the largest non-conflicting subsets ofStrats\E. Because these cannot be conflicting
as they belong to different equivalence classes, we can conclude thatSplit returns the set of the largest
non-conflicting subsets ofStrats.

76 Reasoning about Strategies under Partial Observability and Fairness Constraints

The correctness of Algorithm 1 is then given by the followingtheorem.

Theorem 3. J〈Γ〉ψKF
po computes the set of states of M satisfying〈Γ〉ψ , i.e.

∀s∈ S,s∈ J〈Γ〉ψKF
po iff s |=F

po 〈Γ〉ψ .

Proof sketch.First, Split(S×ActΓ) returns all the possible uniform strategies of the system, where a
uniform strategy is represented by the only action allowed in each equivalence class of states—states
equivalent in terms of the knowledge ofΓ—, this action being the same for every state of the class.

Indeed, the set of the largest non-conflicting subsets ofS×ActΓ is the set of possible uniform strate-
gies. A non-conflicting subset ofS×ActΓ provides at most one action for each equivalence class of states,
otherwise it would not be non-conflicting; second, a largestnon-conflicting subset ofS×ActΓ provides
exactly one action for each equivalence class of states, otherwise there would be a larger subset giving
one action for the missing equivalence classes and this subset would not be conflicting. Finally, a largest
non-conflicting subset ofS×ActΓ is a uniform strategy because it is exactly the definition of auniform
strategy: giving one possible action for each equivalence class. This thus ends the proof thatSplit returns
the set of all possible uniform strategies.

Second,winning= JΓKψKF
f oψ |strat returns the set of states for which the strategystrat is winning.

Indeed, it usesATLKF
f o model checking algorithm, restricted to actions instrat. It thus returns the set

of states for which there is a (global) winning strategy instrat. As strat is, by construction, a uniform
strategy,winning is the set of states for which there exists a uniform winning strategy—in fact, it isstrat
itself.

Finally, the set{s∈ winning|∀s′ ∼Γ s,s′ ∈ winning} is the set of statess for which strat is a winning
strategy for alls′ ∼Γ s. sat thus accumulates all the statess for which there is a winning strategy for all
states indistinguishable froms. As this is exactly the semantics of the property, i.e.sat is exactly the set
of states of the system satisfying the property, the proof isdone.

Improving the basic algorithm The first improvement proposed for the basic algorithm is thepre-
filtering of states to the ones satisfying the property underATLKF

f o ; we can filter them because if a state
s does not satisfy〈Γ〉ψ underATLKF

f o, s cannot satisfy〈Γ〉ψ underATLKF
po. The second one is the

alternation between filtering and splitting the strategies. Both improvements are aimed at reducing the
number of uniform strategies to consider. The improved algorithm is presented in Algorithm 3. Using
this algorithm, we can computeJ〈Γ〉ψKF

po asImprovedJ〈Γ〉ψKF
po|S×ActΓ . The intuition behind Algorithm 3

is to start by computing the set of states satisfying the property and the associated actions (line 3), then
get all conflicts (line 3) and, if there are conflicts, choose one conflicting equivalence class of states
and possible actions (lines 3 to 3) and for each possible action aΓ, recursively call the algorithm with
the strategies followingaΓ (lines 3 and 3)—i.e. split the class into uniform strategiesfor this class and
recursively call the algorithm on each strategy.

More in detail, Algorithm 3 returns the set of states satisfying the property inStrats. So, to get the
final result, we have to take all the states satisfying the property inS×ActΓ. Algorithm 3 uses the func-
tion J.KF,ac

f o |strats. This function is a modification of theJ.KF
f o|strats function where actions are linked to

states. More precisely, every sub-call toJ.KF
po or Fair[Γ] is enclosed byStatesActionsΓ|strats to get all en-

abled actions in these states, restricted tostrats—StatesActionsΓ |strats(Z) = {〈s,aΓ〉 ∈ strats|s∈ Z∧aΓ ∈
enabled(s,Γ)}—, andPre〈Γ〉|strats is replaced byPreac

〈Γ〉|strats(Z) = {〈s,aΓ〉 ∈ strats|aΓ ∈ enabled(s,Γ)∧
∀a,aΓ ⊑ a =⇒ img(s,a) ⊆ Z}. For example,J[Γ]GφKF,ac

f o |Strats= νZ.(StatesActionsΓ|Strats(JφKF
po∪

Fair[Γ]))∩Preac
〈Γ〉|Strats(Z).

S. Busard, C. Pecheur, H. Qu, F. Raimondi 77

Algorithm 3 : ImprovedJ〈Γ〉ψKF
po|Strats

Data: M a given (implicit) model,Γ a subset of agents ofM, ψ anATLKF
po path formula,

Strats⊆ S×ActΓ.
Result: The set of states ofM satisfying〈Γ〉ψ in Strats.

1 Z = J〈Γ〉ψKF,ac
f o |Strats

2 C = {〈s,aΓ〉 ∈ Z|∃〈s′,a′Γ〉 ∈ Z such thats∼Γ s′∧aΓ 6= a′Γ}
if C= /0 then

4 return {s∈ S|∃aΓ ∈ ActΓ s.t.∀s′ ∼Γ s,〈s′,aΓ〉 ∈ Z}
else

6 〈s,aΓ〉= pick one inC
7 E = {〈s′,a′Γ〉 ∈ Z|s∼Γ s′}
8 A= {aΓ ∈ ActΓ|∃〈s,aΓ〉 ∈ E}

sat= {}
for aΓ ∈ A do

11 strat= {〈s′,a′Γ〉 ∈ E|a′Γ = aΓ}∪ (Z\E)
12 sat= sat∪ ImprovedJ〈Γ〉ψKF

po|strat

return sat

Intuitively, StatesActionsΓ |strats(Z) returns all the states ofZ with their enabled actions allowed by
stratsandPreac

〈Γ〉|strats(Z) returns the states that can enforce to reachZ in one step, and the actions that

allow them to do so, restricted to actions instrats. J〈Γ〉ψKF,ac
f o |strats thus returns the states satisfying〈Γ〉ψ

associated to the actions ofstratsthat allow them to do so.
The correctness of Algorithm 3 is given by the following theorem.

Theorem 4. ImprovedJ〈Γ〉ψKF
po|S×ActΓ computes the set of states of M satisfying〈Γ〉ψ , i.e.

∀s∈ S,s∈ ImprovedJ〈Γ〉ψKF
po|S×ActΓ iff s |=F

po 〈Γ〉ψ .

Proof sketch.First, J〈Γ〉ψKF,ac
f o |Strats returns the set of statess (and associated actions) such that there

exists a global strategy inStratsallowing Γ to enforce the property ins. This means that if a state/action
pair is not returned,Γ has no global strategy to enforce the property from the givenstate by using the
action given in the pair. By extension, there is no uniform strategy to enforce the property neither. Thus,
only state/action pairs returned byJ〈Γ〉ψKF,ac

f o |Stratshave to be considered when searching for a uniform

strategy inStrats. This also means thatJ〈Γ〉ψKF,ac
f o |Stratsfilters Stratsto winning global strategies; if the

result is also a uniform strategy, all the states in the returned set have a uniform strategy to enforce the
property.

Second,ImprovedJ〈Γ〉ψKF
po|Strats returns the set of states satisfying the property inStrats. We can

prove this by induction on the number of conflicting equivalence classes ofStrats: this is true if there are
no conflicting classes because Line 3 computes a winning uniform strategy—as discussed above—and
Line 3 returns the set of states for which the strategy is winning for all indistinguishable states. This is
also true in the inductive case because (1) filtering withJ〈Γ〉ψKF,ac

f o |Stratsdoesn’t lose potential state/action
pairs and (2) the algorithm takes one conflicting class and tries all the possibilities for this class.

The final result thus is correct since it returns the set of statess for which there is a uniform strategy
in S×ActΓ that is winning for all states equivalent tos.

78 Reasoning about Strategies under Partial Observability and Fairness Constraints

Complexity considerations Model checkingATL with perfect recall and partial observability is an
undecidable problem [14], while model checkingATLir is a∆P

2-complete problem [9].ATLKF
po subsumes

ATLir and its model checking problem is therefore∆P
2-hard. Algorithm 1 performs a call to[[.]]Ff o for

each uniform strategy:[[.]]Ff o is in P, but in the worst case there could be exponentially many calls to this

procedure, as there could be up to∏i∈Γ |Acti ||Si | uniform strategies to consider.

4 Conclusion

A number of studies in the past have investigated the problemof model checking strategies under partial
observability and, separately, some work has provided algorithms for including fairness constraints on
actionsin the case of full observability. To the best of our knowledge, the issue of fairness constraints
and partial observability have never been addressed together.

In this paper we presentedATLKF
po, a logic combining partial observability and fairness constraints

on states(which is the standard approach for temporal and epistemic logics), and we have provided a
model checking algorithm.The proposed algorithm is similar to the one of Calta et al. [3]. They also split
possible actions into uniform strategies, but they do not provide a way to deal with fairness constraints.

Finally, the structure of our algorithm is compatible with symbolic model checking using OBDDs,
and we are working on its implementation in the model checkerMCMAS [12], where fairness constraints
are only supported for temporal and epistemic operators.

References

[1] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. J. ACM
49(5), pp. 672–713, doi:10.1145/585265.585270.

[2] Christel Baier & Joost-Pieter Katoen (2008):Principles of Model Checking. The MIT Press.

[3] Jan Calta, Dmitry Shkatov & Holger Schlingloff (2010):Finding Uniform Strategies for Multi-agent Systems.
In Jürgen Dix, João Leite, Guido Governatori & Wojtek Jamroga, editors:Computational Logic in Multi-
Agent Systems, Lecture Notes in Computer Science6245, Springer Berlin / Heidelberg, pp. 135–152, doi:10.

1007/978-3-642-14977-1_12.

[4] E. M. Clarke, O. Grumberg & D. Peled (1999):Model Checking. MIT Press.

[5] Mehdi Dastani & Wojciech Jamroga (2010):Reasoning about strategies of multi-agent programs. In: Pro-
ceedings of AAMAS 10, pp. 997–1004.

[6] Ronald Fagin, Joseph Y. Halpern, Yoram Moses & Moshe Y. Vardi (1995): Reasoning about Knowledge.
MIT Press, Cambridge.

[7] Wiebe van der Hoek & Michael Wooldridge (2003):Cooperation, Knowledge, and Time: Alternating-
time Temporal Epistemic Logic and its Applications. Studia Logica75, pp. 125–157, doi:10.1023/A:
1026185103185.

[8] W. Jamroga & T.Ågotnes (2007):Constructive knowledge: what agents can achieve under imperfect infor-
mation. Journal of Applied Non-Classical Logics17(4), pp. 423–475, doi:10.3166/jancl.17.423-475.

[9] Wojciech Jamroga & Jürgen Dix (2006):Model Checking Abilities under Incomplete Information Is Indeed
∆P

2-complete. In: EUMAS’06.

[10] Wojciech Jamroga & Wiebe van der Hoek (2004):Agents that Know How to Play. Fundamenta Informaticae
Volume 63(2), pp. 185–219.

S. Busard, C. Pecheur, H. Qu, F. Raimondi 79

[11] Sascha Klüppelholz & Christel Baier (2008):Alternating-Time Stream Logic for Multi-agent Sys-
tems. In: Coordination Models and Languages, LNCS 5052, Springer, pp. 184–198, doi:10.1007/

978-3-540-68265-3_12.

[12] A. Lomuscio, H. Qu & F. Raimondi (2009):MCMAS: A Model Checker for the Verification of Multi-
Agent Systems. In: Proceedings of CAV 2009, LNCS 5643, Springer, pp. 682–688, doi:10.1007/

978-3-642-02658-4_55.

[13] Alessio Lomuscio & Wojciech Penczek (2007):Symbolic model checking for temporal-epistemic logics.
SIGACT News38(3), pp. 77–99, doi:10.1145/1324215.1324231.

[14] Pierre-Yves Schobbens (2004):Alternating-time logic with imperfect recall. Electronic Notes in Theoretical
Computer Science85(2), pp. 82 – 93, doi:10.1016/S1571-0661(05)82604-0.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 81–89, doi:10.4204/EPTCS.112.13

c© D. P. Guelev
This work is licensed under the
Creative Commons Attribution License.

Reducing Validity in Epistemic ATL
to Validity in Epistemic CTL

Dimitar P. Guelev
Institute of Mathematics and Informatics

Bulgarian Academy of Sciences
Sofia, Bulgaria

gelevdp@math.bas.bg

We propose a validity preserving translation from a subset of epistemic Alternating-time Temporal
Logic (ATL) to epistemic Computation Tree Logic (CTL). The considered subset of epistemicATL is
known to have the finite model property and decidable model-checking. This entails the decidability
of validity but the implied algorithm is unfeasible. Reducing the validity problem to that in a corre-
sponding system ofCTL makes the techniques for automated deduction for that logicavailable for
the handling of the apparently more complex system ofATL.

Introduction

The strategic cooperation modalities ofalternating time temporal logic(ATL, [AHK97, AHK02]) gen-
eralize the path quantifier∀ of computation tree logic(CTL). Combinations ofATL with modal logics
of knowledge [vdHW03, JvdH04] extend temporal logics of knowledge (cf. e.g [FHMV95]) in the way
ATL extendsCTL. Automated deduction forCTL and linear time epistemic temporal logics has been
studied extensively [FDP01, BDF99, GS09a, GS09b]. There ismuch less work on the topic forATL, and
hardly any for its epistemic extensions. The decidability of validity in ATL with complete information
was established in [GvD06] as a consequence of thefinite model property, where the completeness of a
Hilbert-style proof system was given too. Hilbert-style proof systems are known to be unsuitable for au-
tomating proof search. The situation was remedied by a tableau-based decision procedure developed in
[GS09c]. Along with that, the same authors developed tableau systems for branching epistemic temporal
logics in [GS09b]. Temporal resolution (cf. e.g. [FDP01]),which is well understood for linear time
logics and their epistemic extensions, was considered forATL in [Zha10], but only for the〈〈.〉〉◦-subset,
which is similar tocoalition logic [Pau02] and enables only reasoning about a fixed number of steps. To
our knowledge, no similar work has been done for systems epistemicATL.

In this paper we continue the study [GDE11] of a system ofATL with the operator of distributed
knowledge under the perfect recall assumption. In [GDE11] we established the finite model property for
a subset, and a model-checking algorithm for the whole system. That algorithm assumed that coalition
members can use the distributed knowledge of their coalitions to guide their actions. Dropping that
assumption is known to render model-checking undecidable [DT11]. As expected, the validity-checking
algorithm which these results imply is unfeasible.

In this paper we propose a validity preserving translation from another subset of that logic into epis-
temicCTL, with distributed knowledge and perfect recall again. As itbecomes clear below, the need to
consider a subset appears to be due to the lack of connectivesin epistemicCTL to capture some interac-
tions between knowledge and the progress of time. The translation makes no assumption on coordination
within coalitions and there is no dependence on the availability of the past temporal modalities which

82 Reducing Validity in Epistemic ATL

are featured in the axiomatization from [GDE11]. A semanticassumption that we keep isfinite branch-
ing: only finitely many states should be reachable in one step from any state and models should have
only finitely many initial states. Dropping that assumptionwould disable the fixpoint characterization of
(.U.)-objectives that we exploit, because of the requirement on strategies to be uniform. The translation
enables the use of the known techniques for mechanized proofin the apparently simpler logicCTL and
its epistemic extensions [BF99, GS09b]. Building on our previous work [GDE11], we work with the
semantics ofATLon interpreted systemsin their form adopted in [LR06].

1 Preliminaries

1.1 Propositional epistemicATL with perfect recall (ATLD
iR)

The syntax ofATLD
iR formulas can be given by the BNF

ϕ ,ψ ::= ⊥ | p | (ϕ ⇒ ψ) | DΓϕ | 〈〈Γ〉〉 ◦ϕ | 〈〈Γ〉〉(ϕUψ) | [[Γ]](ϕUψ)

Here Γ ranges over finite sets of agents, andp ranges over propositional variables. In this paper we
exclude the past temporal operators as their presence does not affect the working of our translation.

An interpreted systemis defined with respect to some given finite setΣ = {1, . . . ,N} of agents, and a
set ofpropositional variables(atomic propositions) AP. There is also anenvironment e6∈ Σ; in the sequel
we writeΣe for Σ∪{e}.

Definition 1 (interpreted systems) An interpreted systemfor Σ andAP is a tuple of the form

〈〈Li : i ∈ Σe〉, I ,〈Acti : i ∈ Σe〉, t,V〉 (1)

where:
Li, i ∈ Σe, are nonempty sets oflocal states; LΓ stands for∏

i∈Γ
Li, Γ ⊆ Σe;

elements ofLΣe are calledglobal states;
I ⊆ LΣe is a nonempty set ofinitial global states;
Acti , i ∈ Σe, are nonempty sets ofactions; ActΓ stands for∏

i∈Γ
Acti;

t : LΣe ×ActΣe → LΣe is a transition function;
V ⊆ LΣe ×AP is a valuation of the atomic propositions.

For everyi ∈ Σe andl ′, l ′′ ∈ LΣe such thatl ′i = l ′′i andl ′e = l ′′e the functiont satisfies(t(l ′,a))i = (t(l ′′,a))i .

In the literature an interpreted system also includes aprotocol to specify the actions which are permit-
ted at every particular state. Protocols are not essential to our study here as the effect of a prohibited
action can be set to that of some fixed permitted action (whichis always supposed to exist) to produce
an equivalent system in which all actions are always permitted. Our variant of interpreted systems is
borrowed from [LR06] and has a technically convenient feature which is not present in other works
[FHMV95, LQR]: every agent’s next local state can be directlty affected by the local state of the envi-
ronment through the transition function. Here follow the technical notions that are relevant to satisfaction
of ATL formulas on interpreted systems.

Definition 2 (global runs and local runs) Given ann≤ ω , a run of length nis a sequence

r = l0a0l10a1 . . . ∈ LΣe(ActΣeLΣe)
n

such thatl0 ∈ I andl j+1 = t(l j ,a j) for all j < n. A run is infinite, if n= ω ; otherwise it isfinite. In either
case we write|r| for the length nof r. (Note that a run of lengthn< ω is indeed a sequence of 2n+1
states and actions.)

D. P. Guelev 83

Givenr as above andΓ ⊆ Σ, we writerΓ for the correspondinglocal run

l0
Γa0

Γ . . .a
n−1
Γ ln

Γ ∈ LΓ(ActΓLΓ)
n

of Γ in which l j
Γ = 〈l j

i : i ∈ Γ〉 anda j
Γ = 〈a j

i : i ∈ Γ〉.
We denote the set of all runs of some fixed lengthn≤ ω , the set of all finite runs, and the set of all

runs inIS by Rn(IS), Rfin(IS) andR(IS), respectively.
Given i, j < ω and anr as above such thati ≤ j ≤ |r|, we writer[i.. j] for l iai . . .a j−1l j .

Definition 3 (indiscernibility) Given r ′, r ′′ ∈ R(IS) and i ≤ |r ′|, |r ′′|, we write r ′ ∼Γ,i r ′′ if r ′[0..i]Γ =
r ′′[0..i]Γ. We writer ′ ∼Γ r ′′ for the conjunction ofr ′ ∼Γ,|r ′| r ′′ and|r ′|= |r ′′|.

Sequences of the formr /0 consist of〈〉s, and, consequently,[r] /0 is the class of all the runs of length|r|.
Obviously∼Γ,n and∼Γ are equivalence relations onR(IS).

Definition 4 We denote{r ′ ∈ R(IS) : r ′ ∼Γ r} by [r]Γ.

Definition 5 (coalition strategies) A strategyfor Γ ⊆ Σ is a vectors= 〈si : i ∈ Γ〉 of functionssi of
type{r i : r ∈ Rfin(IS)} → Acti. We writeS(Γ, IS) for the set of all the strategies forΓ in the considered
interpreted systemIS. Givens∈ S(Γ, IS) andr ∈ Rfin(IS), we write out(r,s) for the set

{r ′ = l0a0 . . .an−1ln . . . ∈ Rω(IS) : r ′[0..|r|] = r,a j
i = si(r[0.. j]Γ) for all i ∈ Γ and j ≥ |r|}.

of theoutcomesof r whenΓ sticks tos from step|r| on. Given anX ⊆ Rfin(IS), out(X,s) is
⋃

r∈X
out(r,s).

Strategies, as defined above, are determined by the local views of the considered coalition members and
are thereforeuniform.

Definition 6 (modelling relation of ATLD
iR) The relationIS, r |= ϕ is defined forr ∈ Rfin(IS) and formu-

lasϕ by the clauses:
IS, r 6|=⊥;
IS, l0a0 . . .an−1ln |= p iff V(ln, p) for atomic propositionsp;
IS, r |= ϕ ⇒ ψ iff either IS, r 6|= ϕ or IS, r |= ψ ;
IS, r |= DΓϕ iff IS, r ′ |= ϕ for all r ′ ∈ [r]Γ;
IS, r |= 〈〈Γ〉〉 ◦ϕ iff there exists ans∈ S(Γ, IS) such that

IS, r ′[0..|r|+1] |= ϕ for all r ′ ∈ out([r]Γ,s);
IS, r |= 〈〈Γ〉〉(ϕUψ) iff there exists ans∈ S(Γ, IS) s. t. for everyr ′ ∈ out([r]Γ,s) there exists

a k< ω s. t. IS, r ′[0..|r|+ i] |= ϕ for all i < k andIS, r ′[0..|r|+k] |= ψ ;
IS, r |= [[Γ]](ϕUψ) iff for every s∈ S(Γ, IS) there exist anr ′ ∈ out([r]Γ,s) and ak< ω s. t.

IS, r ′[0..|r|+ i] |= ϕ for all i < k andIS, r ′[0..|r|+k] |= ψ .
Validity of formulas in entire interpreted systems and on the class of all interpreted systems, that is, in
the logicATLD

iR, is defined as satisfaction at all 0-length runs in the considered interpreted system, and at
all the 0-length runs in all the systems in the considered class, respectively.

In this paper we assume that each coalition member uses only its own observation power in following a
coalition strategy. Allowing coalition members to share their observations gives rise to a more general
form of strategy, which are functions of type{rΓ : r ∈ Rfin(IS)} → ActΓ, and which was assumed by the
model-checkig algorithm proposed in [GDE11].

84 Reducing Validity in Epistemic ATL

Abbreviations

⊤, ¬, ∨, ∧ and⇔ have their usual meanings. To keep the use of(and) down, we assume that unary
connectives bind the strongest, the binary modalities〈〈Γ〉〉(.U.) and[[Γ]](.U.), and the derived ones below,
bind the weakest, and their parentheses are never omitted, and the binary boolean connectives come in
the middle, in decreasing order of their binding power as follows: ∧, ∨, ⇒ and⇔. We enumerate
coalitions without the{ and}. E.g., the shortest way to write〈〈{1}〉〉(((p⇒ q)∧P{1}r)UD{2,3}(r ∨q)))
is 〈〈1〉〉((p⇒ q)∧P1rUD2,3(r ∨q)). We writeP for the dual ofD:

PΓϕ ⇋ ¬DΓ¬ϕ .

The rest of the combinations of the cooperation modality andfuture temporal connectives are defined by
the clauses

〈〈Γ〉〉3ϕ ⇋ 〈〈Γ〉〉(⊤Uϕ) 〈〈Γ〉〉2ϕ ⇋ ¬[[Γ]]3¬ϕ 〈〈Γ〉〉(ϕWψ)⇋ ¬[[Γ]](¬ψU¬ψ ∧¬ϕ)
[[Γ]]3ϕ ⇋ [[Γ]](⊤Uϕ) [[Γ]]2ϕ ⇋ ¬〈〈Γ〉〉3¬ϕ [[Γ]](ϕWψ)⇋ ¬〈〈Γ〉〉(¬ψU¬ψ ∧¬ϕ)

1.2 ATLD
iR with epistemic objectives only

In [GDE11] we axiomatized a subset ofATLD
iR with past in which〈〈.〉〉(.U.) was allowed only in the

derived construct〈〈Γ〉〉3DΓϕ , and[[.]](.U.) was allowed only in the derived construct〈〈Γ〉〉2ϕ . Because
of the validity of the equivalences

〈〈Γ〉〉 ◦ϕ ⇔ 〈〈Γ〉〉 ◦DΓϕ and〈〈Γ〉〉2ϕ ⇔ 〈〈Γ〉〉2DΓϕ ,

that entailed that all the objectives allowed in that subsetwere epistemic. We argued that, under some
assumptions, any〈〈.〉〉(.U.) formula could be transformed into an equivalent one of the form 〈〈Γ〉〉3DΓϕ
thus asserting the significance of the considered subset. Both the axiomatization and the reduction to
epistemic goals relied on the presence of the past operators. In this paper we consider another subset of
ATLD

iR. Its formulas have the syntax

ϕ ,ψ ::= ⊥ | p | (ϕ ⇒ ψ) | DΓϕ | 〈〈Γ〉〉 ◦ϕ | 〈〈Γ〉〉(DΓϕUDΓψ) (2)

Unlike the subset from [GDE11], here we allow formulas of theform 〈〈Γ〉〉(DΓϕUDΓψ). However, we
exclude even the special case〈〈Γ〉〉2ϕ of the use of[[Γ]](PΓϕUPΓψ). The reasons are discussed in the
end of Section 2.

1.3 CTL with distributed knowledge

This is the target logic of our translation. Its formulas have the syntax

ϕ ,ψ ::= ⊥ | p | (ϕ ⇒ ψ) | DΓϕ | ∃ ◦ϕ | ∃(ϕUψ) | ∀(ϕUψ)

whereΓ ranges over finite sets of agents as above. The clauses for thesemantics of the connectives in
common withATLD

iR are as inATLD
iR; the clauses about formulas built using∃ and∀ are as follows:

IS, r |= ∃◦ϕ iff there exists anr ′ ∈ R|r |+1(IS) such thatr = r ′[0..|r|] andIS, r ′ |= ϕ ;
IS, r |= ∃(ϕUψ) iff there exists anr ′ ∈ Rω(IS) such thatr = r ′[0..|r|] and ak< ω

such thatIS, r ′[0..|r|+ i] |= ϕ for all i < k andIS, r ′[0..|r|+k] |= ψ ;
IS, r |= ∀(ϕUψ) iff for every r ′ ∈ Rω(IS) such thatr = r ′[0..|r|] there exists ak< ω such that

IS, r ′[0..|r|+ i] |= ϕ for all i < k andIS, r ′[0..|r|+k] |= ψ .
Note that the the occurrences ofD /0 is vital for the validity of the equivalences

P /0∃◦ϕ ⇔ [[/0]]◦ϕ , P /0∃(ϕUψ)⇔ [[/0]](ϕUψ) andD /0∀(ϕUψ)⇔ 〈〈 /0〉〉(ϕUψ).

D. P. Guelev 85

in the combined language ofATLD
iR andCTLbecause of the requirement on strategies to be uniform; e.g.,

〈〈 /0〉〉(ϕUψ) means that(ϕUψ) holds along all the extensions of all the runswhich are indiscernible from
the reference run to the empty coalition.Therefore here〈〈 /0〉〉 does not subsume∀ in the straightforward
way known about the caseATLof complete information.

The combination∀◦ and the combinations of∃ and∀ with the derived temporal connectives(.W.),
3 and2 are defined in the usual way.

2 A validity preserving translation into CTL+D with perfect recall

Our translation captures the subset ofATLwhich is given by the BNF

ϕ ,ψ ::= ⊥ | p | (ϕ ⇒ ψ) | ⊖ϕ | (ϕSψ) | DΓϕ | 〈〈Γ〉〉 ◦ϕ | 〈〈Γ〉〉(DΓϕUDΓψ)

We explain how to eliminate occurrences of〈〈.〉〉 in formulas of the form〈〈Γ〉〉(DΓϕUDΓψ) first. In the
sequel we write[α/p]β for the substitution of the occurrences of atomic proposition p in β by α .

Proposition 7 Assuming that p and q are fresh atomic propositions, the satisfiability of
[〈〈Γ〉〉(DΓϕUDΓψ)/p]χ (at a0-length run) is equivalent to the satisfiability of

χ ∧ D /0∀2(p∨q⇒ DΓψ ∨ (DΓϕ ∧〈〈Γ〉〉 ◦q))
∧ D /0∀2(p⇔ DΓψ ∨ (DΓϕ ∧〈〈Γ〉〉 ◦ p))
∧ D /0∀2(p⇒ DΓψ ∨ (DΓϕ ∧∀◦∀(q⇒ DΓϕUq⇒ DΓψ))).

(3)

Next we explain how to eliminate occurrences of the ”basic”ATLconstruct〈〈Γ〉〉◦ϕ . Let ISstand for
some arbitrary interpreted system (1) with finite branching, with Σ = {1, . . . ,N} as its set of agents,AP
as its vocabulary. We adapt the following simple observation, which works in caseActi, i ∈ Σ are fixed.
Readers who are familiar with the original semantics ofATL on alternating transition systems(ATS)
from [AHK97] will recognize the similarity of our techniquewith the transformation ofconcurrent
game structuresinto equivalentATSfrom [GJ04]. Assuming thatActi , i ∈ Σe, are pairwise disjoint, and
disjoint withAP, we consider the vocabularyAPAct = AP∪ ⋃

i∈Σe

Acti .

Definition 8 GivenIS and∗ 6∈ ⋃
i∈Σe

Acti , we define the interpreted system

ISAct = 〈〈LAct
i : i ∈ Σe〉, IAct,〈Acti : i ∈ Σe〉, tAct,VAct〉

by putting:

LAct
i = Li × (Acti ∪{∗}), i ∈ Σe;

IAct = {〈〈l i ,∗〉 : i ∈ Σe〉 : l ∈ I};
tAct(〈〈l i ,ai〉 : i ∈ Σe〉,b) = 〈〈(t(l ,b))i ,bi〉 : i ∈ Σe〉;
VAct(〈〈l i ,ai〉 : i ∈ Σe〉, p) ↔ V(〈l i , : i ∈ Σe〉, p) for p∈ AP;
VAct(〈〈l i ,ai〉 : i ∈ Σe〉,b) ↔ b= a j for b∈ Actj , j ∈ Σe.

In short, anISAct state is anIS state augmented with a record of the actions which lead to it,the dummy
symbol∗ being used in initial states. LetR⊆ LAct

Σe
×LAct

Σe
andR(〈〈l i ,ai〉 : i ∈ Σe〉,〈〈vi ,bi〉 : i ∈ Σe〉) iff v=

tAct(l ,b). ThenISAct, r |= ∃ ◦ϕ iff ISAct, ra l ′ |= ϕ for somel ′ ∈ R(l) and the onlya ∈ ActΣe such that
ra l ′ ∈ Rfin(ISAct). The key observation in our approach is that

IS, r |= 〈〈i1, . . . , ik〉〉 ◦ϕ iff ISAct, rAct |=
∨

ai1∈Acti1

. . .
∨

aik∈Actik

D{i1,...,ik}∀◦
(

k∧

j=1

ai j ⇒ ϕ

)
(4)

86 Reducing Validity in Epistemic ATL

For this observation to work without refering to the actionsin the particular interpreted system, given
an arbitraryIS, we enrich it with dedicated actions which are linked to the objectives occurring in the
considered formula. We define the transition function on these actions so that if a particular◦ϕ-objective
can be achieved at finite runr at all, then it can be achieved by taking the corresponding dedicated actions
at the last state ofr. This can be achieved in forest-like systems where runs can be determined from their
final states. Similarly, we introduce express actions for the environment that enable it to foil objectives at
states at which they objectives cannot be achieved by the respective coalitions using any strategy based
on the original actions. (Giving the environment such powers does not affect the satisfaction of formulas
as it never participates in coalitions.) The setsActi , i ∈ Σe of atomic propositions by which we model
actions satisfy the formula

A(Act1, . . . ,ActN,Acte)⇋
∧

a1∈Act1

. . .
∧

aN∈ActN

∧

ae∈Acte

∃◦
∧

i∈Σe

ai ,

which states that any vector of actions fromActΣe produces a transition. Consider anATLD
iR formula of

the form below with no occurrences of(.U.)-objectives:

χ ∧D /0∀2A(Act1, . . . ,ActN,Acte) (5)

Here Act1, . . . ,ActN,Acte consist of the atomic propositions which have been introduced to eliminate
〈〈Γ〉〉 ◦ϕ-subformulas so far. For the originalχ we assumeActi = {nopi}, i ∈ Σe, wherenopi have no
specified effect. We remove the occurrences of〈〈Γ〉〉◦ϕ-subformulas inχ working bottom-up as follows.

Proposition 9 LetaΓ,i,ϕ , i ∈ Γ∪{e}, be fresh atomic propositions, Act′
i = Acti ∪{aΓ,i,ϕ} for i ∈ Γ∪{e}

and Act′i = Acti for i ∈ Σ\Γ. Then the satisfiability of

[〈〈Γ〉〉 ◦ϕ/p]χ ∧D /0∀2A(Act1, . . . ,ActN,Acte) (6)

entails the satisfiability of the formula
[
DΓ∀◦

(
∧
i∈Γ

aΓ,i,ϕ ⇒ ϕ
)
/p

]
χ∧

D /0∀2
(
DΓ∀◦

(
∧
i∈Γ

aΓ,i,ϕ ⇒ ϕ
)
∨PΓ∀◦ (aΓ,e,ϕ ⇒¬ϕ)

)
∧

D /0∀2A(Act′1, . . . ,Act′N,Act′e).

(7)

The above proposition shows how to eliminate one by one all the occurrences of the cooperation modal-
ities in an any givenATLD

iR formulaχ with the cooperation modalities appearing only in subformulas of
the form〈〈Γ〉〉 ◦ϕ and obtain aCTL+D formulaχ ′ such that ifχ is satisfiable, then so isχ ′. Now con-
sider a purely-CTL+D formula of the form (5). The satisfaction of (5) requires just a transition relation
for the passage of time to define as it contains no〈〈Γ〉〉s and hence no reference to actions. That is, we
assume a satisfying model of the form

IS− = 〈〈Li : i ∈ Σe〉, I ,−,V〉 (8)

whereLi , i ∈ Σe, I andV are as in interpreted systems, and− is a serial binary relation on the set of
the global statesLΣe that represents the passage of time. We define the remaining interpreted system
components as follows. We choose the set of actions of each agent i, including the environment, to be
the corresponding set of atomic propositionsActi from (5). For anya∈ ActΣe and anyl ∈ LΣe we choose
t(l ,a) to be an arbitrary member of−(l)∩ ⋂

i∈Σe

{l ′ ∈ LΣe : V(l ′,ai)}. The nonemptiness of the latter set is

guaranteed by the validity ofA(Act1, . . . ,ActN,Acte) in IS−, which states that every state has a successor

D. P. Guelev 87

satisfying the conjunction
∧

i∈Σe

ai for any given vector of actionsa∈ ActΣe. Let IS stand for the system

obtained by this definition ofActi , i ∈ Σe, andt. It remains to show that

IS, r |=DΓ∀◦
(
∧

i∈Γ
aΓ,i,ϕ ⇒ ϕ

)
(9)

is equivalent toIS, r |= 〈〈Γ〉〉 ◦ϕ for any subformula〈〈Γ〉〉 ◦ϕ eliminated in the process of obtaining (5).
For the forward direction, establishing that the actionsaΓ,i,ϕ , i ∈ Γ providesΓ with a strategy to achieveϕ
in one step is easily done by a direct check. For the converse direction, if (9) is false, then the validity of
the second conjunctive member of (7) entails thatΓ cannot rule out the possibility that the environment
can enforce¬ϕ in one step by choosing its corresponding actionaΓ,e,ϕ .

Formulas of the form [[Γ]](PΓϕUPΓψ)

We first note that no restriction on formulas of the respective more general form[[Γ]](ϕUψ) is necessary
in the case of complete information.

Proposition 10 (eliminating [[Γ]](ϕUψ) in ATLwith complete information) Let p and q be some fresh
atomic propositions. The satisfiability of

[[[Γ]](ϕUψ)/p]χ

in ATL with complete information is equivalent to the satisfiability of

χ ∧ ∀2(p∨q⇒ ψ ∨ (ϕ ∧ [[Γ]]◦q))
∧ ∀2(p⇔ ψ ∨ (ϕ ∧ [[Γ]]◦ p))
∧ ∀2(p⇒ ψ ∨ (ϕ ∧∀◦∀(q⇒ ϕUq⇒ ψ))).

(10)

In the incomplete information case our approach suggests replacing[[[Γ]](PΓϕUPΓψ)/p]χ by

χ ∧ D /0∀2(p∨q⇒ PΓψ ∨ (PΓϕ ∧ [[Γ]]◦q))
∧ D /0∀2(p⇔ PΓψ ∨ (PΓϕ ∧ [[Γ]]◦ p))
∧ D /0∀2(p⇒ PΓψ ∨ (PΓϕ ∧ . . .)).

where, in a forest-like systemIS, q is supposed to mark states which are reached from runsr in which Γ
cannot achieve(PΓϕUPΓψ) whenΓ’s actionsa are complemented on behalf of the non-members ofΓ
by some actionsba1,r1 that foil the objective, and. . . is supposed to express that any sequence of vectors
of actionsa1,a2, . . . ∈ ActΓ when complemented by the correspondingba1,r1, ba2,r2, . . . can generate a
sequencer1, r2, . . . of finite runs, starting with the reference one, each of them being Γ-indiscernible
from the extension of the previous one, by the outcome of the respectiveak ·bak,rk, such that there exists a
k< ω with IS, r j |= q∧DΓϕ , j = 1, . . . ,k−1, andIS, rk |= ¬q∨DΓψ . The fixpoint construct that would
best serve expressing this condition can be written asµX.α ∨ (β ∧PΓ∀◦X) in the modalµ-calculus (cf.
e.g. [BS06]). Finding a substitute for it inCTL+D appears problematic.

Concluding remarks

Our approach is inspired by temporal resolution [FDP01], which has been extended to epistemicLTL
[DFW98] and to (non-epistemic)CTL andCTL∗ [BF99, BDF99], the latter system being the closest to
our target systemCTL+D. Following the example of these works, a resolution system for CTL+D
could be proved complete by showing how to reproduce in it anyproof in some complete, e.g., Hilbert

88 Reducing Validity in Epistemic ATL

style proof system. A complete axiomatization for epistemic CTL∗ with perfect recall can be found in
[vdMK03], but the completeness was demonstrated with respect to the so-calledbundlesemantics, where
a model may consist of some set of runs that need not be all the runs generated by a transition system.
and the form of collective knowledge considered in [vdMK03]is common knowledge, whereas we have
distributed knowledge. The setting for the complexity results from [HV86] is similar. The tableau-based
decision procedure for epistemicCTLwith both common and distributed knowledge from [GS09b] does
not cover the case of perfect recall. To the best of our knowledge no decision procedure of feasible
complexity such as the resolution- and tableau-based ones that are available for so many closely related
systems from the above works has been developed yet for validity in CTL+D with perfect recall.

Acknowledgement

The research in this paper was partially supported through Bulgarian National Science Fund Grant
DID02/32/2009.

References

[AHK97] Rajeev Alur, Tom Henzinger, and Orna Kupferman. Alternating-time Temporal Logic. InProceedings
of FCS’97, pages 100–109, 1997, doi:10.1007/3-540-49213-52.

[AHK02] Rajeev Alur, Tom Henzinger, and Orna Kupferman. Alternating-time temporal logic.Journal of the
ACM, 49(5):1–42, 2002, doi:10.1145/585265.585270.

[BDF99] Alexander Bolotov, Clare Dixon, and Michael Fisher. Clausal Resolution for CTL* . In MFCS, volume
1672 ofLNCS, pages 137–148. Springer, 1999, doi:10.1007/3-540-48340-3 13.

[BF99] Alexander Bolotov and Michael Fisher. A clausal resolution method for CTL branching-time temporal
logic. J. Exp. Theor. Artif. Intell., 11(1):77–93, 1999, doi:10.1080/095281399146625.

[BS06] Julian Bradfield and Colin Stirling. Modalµ-Calculi. In Handbook of Modal Logic, volume 3 of
Studies in Logic and Practical Reasoning, pages 721–756. Elsevier, 2006.

[DFW98] Clare Dixon, Michael Fisher, and Michael Wooldridge. Resolution for Temporal Logics of Knowl-
edge.Journal of Logic and Computation, 8(3):345–372, 1998, doi:10.1093/logcom/8.3.345.

[DT11] Catalin Dima and Ferucio Laurentiu Tiplea. Model-checking ATL under Imperfect Information and
Perfect Recall Semantics is Undecidable.CoRR, abs/1102.4225, 2011.

[FDP01] Michael Fisher, Clare Dixon, and Martin Peim. Clausal Temporal Resolution.ACM Trans. Comput.
Log., 2(1):12–56, 2001, doi:10.1145/371282.371311.

[FHMV95] Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning about Knowledge. MIT
Press, 1995.

[GDE11] Dimitar P. Guelev, Catalin Dima, and Constantin Enea. An Alternating-time Temporal Logic with
Knowledge, Perfect Recall and Past: Axiomatisation and Model-checking.Journal of Applied Non-
Classical Logics, 21(1):93–131, 2011, , doi:10.3166/jancl.21.93-131.

[GJ04] Valentin Goranko and Wojtek Jamroga. Comparing Semantics for Logics of Multi-agent Systems.
Synthese, 139(2):241–280, 2004.

[GS09a] Valentin Goranko and Dmitry Shkatov. Tableau-based decision procedure for full coalitional mul-
tiagent temporal-epistemic logic of linear time. InAAMAS (2), pages 969–976. IFAAMAS, 2009,
doi:10.1145/1558109.1558147.

D. P. Guelev 89

[GS09b] Valentin Goranko and Dmitry Shkatov. Tableau-based decision procedure for the full coalitional
multiagent logic of branching time. InMALLOW, volume 494 ofCEUR Workshop Proceedings.
CEUR-WS.org, 2009.

[GS09c] Valentin Goranko and Dmitry Shkatov. Tableau-based decision procedures for logics of strategic
ability in multiagent systems.ACM Trans. Comput. Log., 11(1), 2009, doi:10.1145/1614431.1614434.

[GvD06] Valentin Goranko and Govert van Drimmelen. Decidability and Complete Axiomatization of
the Alternating-time Temporal Logic. Theoretical Computer Science, 353(1-3):93–117, 2006,
doi:10.1016/j.tcs.2005.07.043.

[HV86] Joseph Y. Halpern and Moshe Y. Vardi. The complexity of reasoning about knowledge and
time: Extended abstract. In Juris Hartmanis, editor,STOC, pages 304–315. ACM, 1986,
doi:10.1145/12130.12161.

[JvdH04] Wojciech Jamroga and Wiebe van der Hoek. Agents That Know How to Play.Fundamenta Informat-
icae, 63(2-3):185–219, 2004.

[LQR] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: a Model Checker for Multi-
Agents Systems. URL:http://www-lai.doc.ic.ac.uk/mcmas/. Accessed in January, 2010.

[LR06] Alessio Lomuscio and Franco Raimondi. Model checking knowledge, strategies, and games
in multi-agent systems. InProceedings of AAMAS’06, pages 161–168. ACM Press, 2006,
doi:10.1145/1160633.1160660.

[Pau02] Marc Pauly. A Modal Logic for Coalitional Power in Games. Journal of Logic and Computation,
12(1):149–166, 2002, doi:10.1093/logcom/12.1.149.

[vdHW03] Wiebe van der Hoek and Michael Wooldridge. Cooperation, Knowledge and Time: Alternating-
time Temporal Epistemic Logic and Its Applications. Studia Logica, 75:125–157, 2003,
doi:10.1023/A:1026185103185.

[vdMK03] Ron van der Meyden and Ka-shu Wong. Complete Axiomatizations for Reasoning about Knowledge
and Branching Time.Studia Logica, 75(1):93–123, 2003, doi:10.1023/A:1026181001368.

[Zha10] Lan Zhang. Clausal reasoning for branching-time logics. Ph.d. the-
sis, University of Liverpool, 2010. Accessed in December 2012 from
http://research-archive.liv.ac.uk/3373/4/ZhangLan Dec2010 3373.pdf.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 91–98, doi:10.4204/EPTCS.112.14

c© Ch. Chareton, J. Brunel & D. Chemouil

Towards an Updatable Strategy Logic

Christophe Chareton Julien Brunel David Chemouil
Onera – The French Aerospace Lab

F-31055 Toulouse, France

firstname.lastname@onera.fr

This article is about temporal multi-agent logics. Severalof these formalisms have been already
presented (ATL-ATL*, ATLsc, SL). They enable to express the capabilities of agents in a system to
ensure the satisfaction of temporal properties. Particularly, SL and ATLsc enable several agents to
interact in a context mixing the different strategies they play in a semantical game. We generalize
this possibility by proposing a new formalism, Updating Strategy Logic (USL). In USL, an agent can
also refine its own strategy. The gain in expressive power rises the notion ofsustainable capabilities
for agents.

USL is built from SL. It mainly brings to SL the two following modifications: semantically, the
successor of a given state is not uniquely determined by the data of one choice from each agent.
Syntactically, we introduce in the language an operator, called anunbinder, which explicitly deletes
the binding of a strategy to an agent. We show that USL is strictly more expressive than SL.

1 Introduction

Multi-agent logics are receiving growing interest in contemporary research. Since the seminal work of
Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman [2], one major and recent direction (ATL with
Strategy Context [3, 6, 7], Strategy Logic (presented first in [5] and then extended in [8, 10]) aims at
contextualizing the statements of capabilities of agents.

Basically, multi-agent logics enable assertions about thecapability of agents to ensure temporal
properties. Thus, ATL-ATL∗ [2] appears as a generalization of CTL-CTL∗, in which the path quantifiers
E andA are replaced bystrategy quantifiers. Strategy quantifiers (the existential〈〈A〉〉 and the universal
JAK) have a (coalition of) agent(s) as parameter.〈〈A〉〉ϕ means that agents inA can act so as to ensure the
satisfaction of temporal formulaϕ . It is interpreted inConcurrent Game Structures(CGS), where agents
can make choices influencing the execution in the system. Formula 〈〈A〉〉ϕ is true if agents inA have a
strategy so that if playing it they force the execution to satisfy ϕ , whatever the other agents do.

A natural question is: how to interpret the imbrication of several quantifiers? Precisely, in the inter-
pretation of such formula as

ψ1 := 〈〈a1〉〉�(ϕ1∧〈〈a2〉〉�ϕ2)

(where�ϕ is the temporal operator meaningϕ is always true, anda1 anda2 are agents), is the evaluation
of ϕ2 made in a context that takes into account both the strategy quantified in 〈〈a1〉〉 and the strategy
quantified in〈〈a2〉〉?

In ATL-ATL ∗, only a2 is bound: subformula〈〈a2〉〉�ϕ2 is true iff a2 may ensure�ϕ2, whatever the
other agents do. Then〈〈a2〉〉 stands for three successive operations: First, each agent is unbound from its
current strategy, then an existential quantification is made for strategyσ . At last,a2 is bound to strategy
σ .

ATL sc [3, 6, 7], while keeping the ATL syntax, adapts the semanticsin order to interpret formulas in
a context which stores strategies introduced by earlier quantifiers.

92 Towards an Updatable Strategy Logic

Strategy Logic(SL [8,10]) is another interesting proposition, which distinguishes between the quan-
tifications over strategies and their bindings to agents. The operator〈〈a〉〉 is split into two different
operators: a quantifier over strategies (〈〈x〉〉, wherex is a strategy variable) and a binder ((a,x), wherea
is an agent) that stores into a context the information thata plays along the strategy instantiating variable
x (let us write itσx in the remaining of this paper).The ATL formulaψ1 syntactically matches the SL:

ψ2 := 〈〈x1〉〉(a1,x1)�(ϕ1∧〈〈x2〉〉(a2,x2)�ϕ2)

In ψ2, when evaluating�ϕ2, a1 remains bound to strategyσx1 except ifa1 anda2 are the same agent. If
they are the same, the binder(a2,x2) unbindsa from its current strategies before binding her toσx2.

In this paper we present USL, a logic obtained from SL by making explicit the unbinding of strategies
and allowing new bindings without previous unbinding. For that, we introduce an explicit unbinder
(a⋫ x) in the syntax (and the binder in USL is written(a⊲ x)) and we interpret USL in models where
the choices of agents are represented by the set of potentialsuccessors they enable from the current state.
When there is no occurrence of an unbinder, each agent remains bound to her current strategies. Then
different strategies can combine together even for a singleagent, provided that they arecoherent, which
means they define choices in non-empty intersection (the notion is formally defined in Sect. 2).

The main interest in such introduction is to distinguish between cases where an agent composes
strategies together and situations where she revokes a current strategy for playing an other one. Ifa1 and
a2 are the same agents, thenψ2 is written in SL:

ψ3 := 〈〈x1〉〉(a,x1)�(ϕ1∧〈〈x2〉〉(a,x2)�ϕ2),

which syntactically matches the USL:

ψ4 := 〈〈x1〉〉(a⊲ x1)�(ϕ1∧〈〈x2〉〉(a⊲ x2)�ϕ2)

In ψ3, subformula〈〈x2〉〉(a,x2)�ϕ2 states thata can adopt a new strategy that ensures�ϕ2, no matter
if it is coherent with the strategyσx1 previously adopted. Inψ4, both strategies must combine coherently
together. In natural languageψ4 states thata can ensureϕ1 and leave open the possibility to ensureϕ2

in addition. The equivalent ofψ3 in USL is actually notψ4 but

ψ5 := 〈〈x1〉〉(a⊲ x1)�(ϕ1∧〈〈x2〉〉(a⋫ x1)(a⊲ x2)�ϕ2)

There indeed, in subformula(a⋫ x1)(a⊲ x2)�ϕ2, a is first unbound fromσx1 and then bound toσx2.
A consequence of considering these compositions of strategies is the expressiveness ofsustainable

capabilitiesof agents. Let us now consider the USL formula:

ψ6 := 〈〈x1〉〉(a⊲ x1)�(〈〈x2〉〉(a⋫ x1)(a⊲ x2)X p)

There the binder(a⊲ x2) is used with the unbinder(a⋫ x1), so thatψ6 is equivalent to the SL:

ψ7 := 〈〈x1〉〉(a,x1)�(〈〈x2〉〉(a,x2)X p)

It states thata can remain capable to perform the condition expressed byX p when she wants. But in
case she actually performs it, the formula satisfaction does not require that she is still capable to perform
it. The statement holds in states0 in structureM1 with single agenta. See Fig.1, where choices are
defined by the set of transitions they enable. SinceM1 interprets SL formulas with only agenta, the
choices fora are deterministic: lets,s′ be two states andc a choice, then the transition froms to s′ is

Ch. Chareton, J. Brunel & D. Chemouil 93

s0¬p
s1p

s2¬pc2 c1

c1 c1

Figure 1: StructureM1

labelled withc iff {s′} is a choice fora at s. Indeed, by always playing choicec1, a remains in states0,
where she can change her mind to ensurep. But if she chooses to reachp, she can do it only by moving
to states1 and then to states2. Doing so, she loses her capability to ensureX p at any time. The only
way for her to maintain her capability to reachp is to always avoid it, her capability is not sustainable.

A more game theoretical view is to consider strategies as commitments. In such view, by adopting
a strategy,a adopts a behavior that holds in the following execution, as far as it is not explicitly deleted.
Formula

ψ8 := 〈〈x1〉〉(a⊲ x1)�(〈〈x2〉〉(a⊲ x2)X p)

is the counterpart of formulaψ7 with such interpretation of composing strategies for a single agent. If
a playsσx2, it must be coherently withσx1. Thus,ψ8 is false in structureM1, sincea cannot achievep
more than once.

Formulaψ8 distinguishes between structuresM1 and M2 from Fig.2 (Note that in this second
structure the choices are not deterministic: from a given state a choice may be compatible with several
potential successors). InM2, ψ8 is true ats0 since the strategyalways play c1 ensure the execution to
remain in states0 or s1 and is always coherent with strategyplay c2 first and then always play c1, which
ensuresX p from statess0 ands1. What is at stake with it is the difference betweensustainable capa-
bilities andone shot capabilities. Formulasψ7 andψ8 both formalize the natural language propositiona
can always achieve p. One shot capability (ψ7) means she can achieve it once for all and choose when.
Sustainable capability (ψ8) means she can achieve it and choose when without affecting nor losing this
capability for the future.

s0¬p
s1
p

s2¬p

c1,c2

c1,c3

c3

c1,c3

c1,c2

c1,c2,c3

Figure 2: StructureM2

In Sect.3, we compare the expressive power of SL and USL by useof formulaψ9, obtained fromψ7

by adding toa the sustainable capability to ensureX ¬p:

ψ9 := 〈〈x〉〉(a⊲ x)�(〈〈x0〉〉(a⊲ x0)X p∧〈〈x0〉〉(a⊲ x0)X ¬p)

ψ9 states thata has sustainable capability to decide whetherp or ¬p holds at next state. We say thata
hassustainablecontrol on propertyp: she is sustainably capable to decide the truth value ofp.

The main purposes of USL are to give a formalism for the composition of strategies and to unify
it with the classical branching-time mechanisms of strategy revocation. So, both treatments can be
combined in a single formalism. In the remaining of this paper we define USL syntax and semantics, and
we introduce the comparison of its expressive power with that of SL.

94 Towards an Updatable Strategy Logic

2 Syntax and semantics

In this section we present the syntax and semantics of USL, together with the related definitions they
require. The USL formulas distinguish betweenpathandstateformulas.

Definition 1. Let Ag be a set of agents, At a set of propositions and X a set of variables, USL (Ag,At,X)
is given by the following grammar:

• State formulas:ϕ ::= p | ¬ϕ | ϕ ∧ϕ | 〈〈x〉〉ϕ | (A⊲ x)ψ | (A⋫ x)ψ

• Path formulas:ψ ::= ϕ | ¬ψ | ψ ∧ψ | ψ U ψ | X ψ
where p∈ At,A⊆ Ag,x∈ X.

These formulas hold a notion offreevariable that is similar to that in [8, 10]: an atom has an empty
set of free variables, a binder adds a free variable to the setof free variables of its direct subformula
and a quantifier deletes it. Upon formulas on this grammar, those that can be evaluated with no context
are thesentences. They are formulas with empty set of free variables, which means each of their bound
variables is previously quantified. We now come to the definitions for USL semantics.

Definition 2. A Non-deterministic Alternating Transition System (NATS)is a tuple
M = 〈Ag,M,At,v,Ch〉 where:

• M is a set of states, called the domain of the NATS, At is the setof atomic propositions and v is a
valuation function, from M toP(At).

• Ch: Ag×M →P(P(M)) is a choice function mapping a pair(agent,state) to a non-empty family
of choices of possible next states. It is such that for every state s∈ M and for every agents a1 and
a2 in Ag, for every c1 ∈ Ch(a1,s) and c2 ∈ Ch(a2,s),c1∩c2 6= /0.

We call a finite sequence of states inM a track τ . The last element of a trackτ is denoted bylast(τ).
The set of tracks that are possible inM is denoted bytrackM : τ = s0s1 . . .sk ∈ trackM iff for every i < k,
for everya∈ Ag, there isca ∈ P(M) s.t.ca ∈ Ch(a,si) andsi+1 ∈ ca. Similarly, an infinite sequence of
states such that all its prefixes are intrackM is called apath(in M).

Definition 3 (Strategies and coherence). A strategyis a functionσ from Ag× trackM to P(M) such that
for all (a,τ)∈Ag× trackM ,σ(a,τ)∈Ch(a, last(τ)). By extension, we writeσ(A,τ) for

⋂
a∈A σ(a,τ) for

every A⊆Ag. Two strategiesσ1 andσ2 arecoherentiff for all (a,τ) in Ag× trackM ,σ1(a,τ)∩σ2(a,τ) 6=
/0. In this case, we also say thatσ1(a,τ) andσ2(a,τ) arecoherent choices.

A commitmentκ is a finite sequence upon(P(Ag)×X), representing the active bindings. Anassign-
mentα is a partial function fromX to Strat. A contextχ is a pair of an assignment and a commitment.
Note that an agent can appear several times in a commitment. Furthermore commitments store the or-
der in which pairs(A,x) are introduced. Therefore our notion of contexts differs from the notion of
assignmentsthat is used in SL [8,10].

A context defines a function fromtrackM to P(M). We use the same notation for the context itself
and its induced function. Letκ /0 be the empty sequence upon(P(Ag)×X), then:

• (α ,κ /0)(τ) = M

• (α ,(A,x))(τ) =
–

⋂
a∈A α(x)(a,τ) if A 6= /0

– elseM

• (α ,κ · (A,x))(τ) =

Ch. Chareton, J. Brunel & D. Chemouil 95

– (α ,κ)(τ)∩ (α ,(A,x))(τ) if this intersection is not empty.
– otherwise (which means the context induces contradictory choices),(α ,κ)(τ) .

Now we can define the outcomes of a contextχ , out (χ): let π = π0,π1, . . . be an infinite sequence over
M, thenπ ∈ out(s,χ) iff π is a path inM , s= π0 and for everyn∈ N, πn+1 ∈ χ(π0 . . .πn).

Definition 4 (Strategy and assignment translation). Let σ be a strategy andτ be a track. Thenσ τ is the
strategy s.t. for everyτ ′ ∈ trackM , σ τ(τ ′) = σ(ττ ′). The notion is extended to an assignment: for every
α ,ατ is the assignment with domain equal to that ofα and s.t. for every x∈ dom(α),ατ (x) = (α(x))τ

We also define the following transformations of commitmentsand assignments. Given a commitment
κ , coalitionsA andB, a strategy variablex, an assignmentα and a strategyσ :

• κ [A→ x] = κ · (A⊲ x)

• ((B,x) ·κ)[A9 x] = (B\A,x) · (κ [A9 x]) andκ /0[A9 x] = κ /0

• α [x→ σ] is the assignment with domaindom(α)∪{x} s.t.∀y∈ dom(α)\{x},α [x→ σ](y) = α(y)
andα [x→ σ](x) = σ

Definition 5 (Satisfaction relation). Let M be a NATS, then for every assignmentα , commitmentκ ,
state s and pathπ:

• State formulas:

– M ,α ,κ ,s |= p iff p∈ v(s), with p∈ At

– M ,α ,κ ,s |= ¬ϕ iff it is not true thatM ,α ,κ ,s |= ϕ
– M ,α ,κ ,s |= ϕ1∧ϕ2 iff M ,α ,κ ,s |= ϕ1 andM ,α ,κ ,s |= ϕ2

– M ,α ,κ ,s |= 〈〈x〉〉ϕ iff there is a strategyσ ∈ Strat s.t.M ,α [x→ σ],κ ,s |= ϕ
– M ,α ,κ ,s |= (A⊲ x)ϕ iff for everyπ in out(α ,κ [A→ x]),M ,α ,κ [A→ x],π |= ϕ
– M ,α ,κ ,s |= (A⋫ x)ϕ iff for all π in out(α ,κ [A9 x]),M ,α ,κ [A9 x],π |= ϕ

• Path formulas :

– M ,α ,κ ,π |= ϕ iff M ,α ,κ ,π0 |= ϕ , for every state formulaϕ
– M ,α ,κ ,π |= ¬ψ iff it is not true thatM ,α ,κ ,π |= ψ
– M ,α ,κ ,π |= ψ1∧ψ2 iff M ,α ,κ ,π |= ψ1 andM ,α ,κ ,π |= ψ2

– M ,α ,κ ,π |= X ψ iff M ,απ0,κ ,π1 |= ψ .

– M ,α ,κ ,π |= ψ1 U ψ2 iff there is i∈ N s.t.M ,απ0...πi−1,κ ,π i |= ψ2 and for every0≤ j <
i,M ,απ0...π j−1,κ ,π j |= ψ1

Let α /0 be the unique assignment with empty domain. Letϕ be a sentence in USL(Ag,At,X). Then
M ,s |= ϕ iff M ,α /0,κ /0 |= ϕ .

Let us give the following comment over these definitions: forevery contextχ = (α ,κ), the definition
of out (χ) ensures that the different binders encoded inχ compose their choices together,as far as
possible. In case two contradictory choices from an agent are encodedin the context, the priority is
given to the first binding that was introduced in this context(the left most binding in the formula). This
guarantees that a formula requiring the composition of two contradictory strategies is false. For example,
suppose that〈〈x1〉〉(a⊲ x1)ϕ1 and〈〈x2〉〉(a⊲ x2)ϕ2 are both true in a state of a model, and suppose that
strategiesσx1 andσx2 necessarily rely on contradictory choices ofa (this means thata cannot play in a
way that ensures bothϕ1 andϕ2). Then,〈〈x1〉〉(a⊲ x1)(ϕ1∧〈〈x2〉〉(a⊲ x2)ϕ2) is false in the same state of
the same model. If the priority was given to the most recent binding (right most binding in the formula),
the strategyσx1 would be revoked and the formula would be satisfied.

96 Towards an Updatable Strategy Logic

3 Comparison with SL [8,10]

SL syntax can be basically described from SL by deleting the use of the unbinder. Furthermore, the
binders are limited to sole agents and are written(a,x) instead of(a ⊲ x). USL appears to be more
expressive than SL [8, 10]. More precisely, SL can be embedded in USL, whileψ9 is not expressible
in SL, even by extending its semantics to non-deterministicmodels. Here we give the three related
propositions. By lack of space, the proofs are only sketchedin this article. Detailed proofs of these
propositions can be found in [4]. Note that, since SL is strictly more expressive than ATLsc [6], the
following results also hold for comparing USL with ATLsc.

Proposition 1. There is an embedding of SL into USL.

Proof (Sketch).The embedding consists in a parallel transformation from SLmodels and formulas to that
of USL. The transformation preserves the satisfaction relation. The differences between SL and USL
lie both in the definition of strategies in SL semantics and the difference of interpretation for the binding
operator. The first is treated by defining an internal transformation for SL. By this transformation, the
constraints of agents playing the same choices, issued fromSL actions framework, are expressed in the
syntax. Then we define a new operator in USL that is equivalentto SL binding, and show the equivalence:
the operator[a⊲ x] is an abbreviation for a binder(a⊲ x) preceded by the set of unbinders(a⋫ xi), one
for every variablexi in the language.

Proposition 2. A model is saiddeterministicif the successor of a state is uniquely determined by one
choice for every agent. Then, sustainable control is not expressible over deterministic models, neither in
SL nor in USL.

Proof (Sketch).One checks that for every deterministic NATSM , for any states of M , M ,s2 ψ9.
Proposition 1 then straightly brings proposition 2

Proposition 3. Sustainable control is not expressible in SL interpreted over NATSs.

Proof (Sketch).The proof uses a generalization of SL semantics overNATSs. Its definition is in [4] and
holds, for example, the following cases:

• M ,α ,κ ,s |=NATS X ϕ iff for every π ∈ out(s,(α ,κ)),M ,απ0 ,κ ,π1 |=NATS ϕ

• M ,α ,κ ,π |=NATS ϕ1 U ϕ2 iff for every π ∈ out(s,(α ,κ)), there isi ∈ N s.t. M ,απ0...πi−1,κ ,π i

|=NATS ϕ2 and for all 0≤ j ≤ i,M ,απ0...πi−1,κ ,π j |=NATS ϕ1.

• M ,α ,κ ,s |=NATS 〈〈x〉〉ϕ iff there is a strategyσ ∈ Strats.t.M ,α [x→ σ],κ ,s |=NATS ϕ .

• M ,α ,κ ,s |=NATS (a,x)ϕ iff M ,α ,κ [x\κ(a)],s |=NATS ϕ .

whereκ [x\κ(a)] designates the context obtained fromκ by replacing every(a,y) in it by (a,x).
Formulaψ9 states thata can always control whetherp or not. Suppose there is a formulaϕ in SL

equivalent toψ9 and let us callexistentiala formula in SL in which every occurrence of〈〈x〉〉 is under an
even number of quantifiers. Ifϕ is existential then under binary trees it is equivalent to a formula inΣ1

1
(the fragment of second order logic with only existential set quantifiers).

We now consider a set of formulas{Γi}i∈N, each one stating thata can choosei times betweenp and
¬p. The set{Γi}i∈N is defined by induction overi:

• Γ0 := 〈〈x〉〉(a,x)�(〈〈x0〉〉(a,x0)X p∧〈〈x0〉〉(a,x0)X ¬p)

Ch. Chareton, J. Brunel & D. Chemouil 97

• for all i ∈ N,Γi +1= Γi [p∧�(〈〈xi+1〉〉(a,xi+1)X p∧〈〈xi+1〉〉(a,xi+1)X ¬p\p]
[¬p∧�(〈〈xi+1〉〉(a,xi+1)X p∧〈〈xi+1〉〉(a,xi+1)X ¬p)\¬p].

where the notationθ1[θ2\θ3] designates the formula obtained fromθ1 by replacing any occurrence of
subformulaθ3 in it by θ2. {Γi}i∈N is equivalent toϕ . A compactness argument shows that it is not
equivalent to a formula inΣ1

1 under binary trees, henceϕ is not an existential formula. Then, we notice
thatϕ is true in structures where, from any state,a can ensure any labelling of sequences overp. So, if
ϕ has a subformula(a,x)ψ wherex is universally quantified,ψ must be equivalent to�(p∨¬p). Then,
by iteration,ϕ is equivalent to an existential formula in SL. Hence a contradiction.

4 Conclusion

In this article we defined a strategy logic with updatable strategies. By updating a strategy, agents remain
playing along it but add further precision to their choices.This mechanism enables to express such
properties as sustainable capability and sustainable control. To the best of our knowledge, this is the first
proposition for expressing such properties. Especially, the comparison introduced with SL in this article
could be adapted to ATL with Strategy Context [3].

The revocation of strategies is also questioned in [1]. The authors propose a formalism with definitive
strategies, that completely determine the behaviour of agents. They also underline the difference between
these strategies and revocable strategies in the classicalsense. We believe that updatable strategies offer
a synthesis between both views: updatable strategies can bemodified without being revoked.

Strategies in USL can also be explicitly revoked. This idea is already present in [3] with the operator
·〉A〈·. But the operator〈·A·〉 also implicitly unbinds current strategy for agents inA before binding them
a new strategy. Thus it prevents agents from updating their strategy or composing several strategies.

Further study perspectives about USL mainly concern the model checking. Further work will provide
it with a proof of non elementary decidability, adapted fromthe proof in [10]. We are also working
on a semantics for USL under memory-less strategies andPSPACE algorithm for its model-checking.
Satisfiability problem should also be addressed. Since SL SAT problem is not decidable, similar result is
expectable for USL. Nevertheless, decidable fragments of USL may be studied in the future, in particular
by following the directions given in [9].

References

[1] Thomas Ågotnes, Valentin Goranko & Wojciech Jamroga (2007): Alternating-time temporal logics with irre-
vocable strategies. In: Theoretical aspects of rationality and knowledge, pp. 15–24, doi:10.1145/1324249.
1324256.

[2] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. J. ACM
49(5), pp. 672–713, doi:10.1145/585265.585270.

[3] T. Brihaye, A. Da Costa, F. Laroussinie & N. Markey (2009): ATL with strategy contexts and bounded
memory. Logical Foundations of Computer Science, pp. 92–106, doi:10.1007/978-3-540-92687-0_7.

[4] Christophe Chareton, Julien Brunel & David Chemouil (2013): Updatable Strategy Logic. hal-00785659.
Available athttp://hal.archives-ouvertes.fr/hal-00785659. Submitted.

[5] Krishnendu Chatterjee, Thomas A. Henzinger & Nir Piterman (2010):Strategy logic. Inf. & Comp. 208(6),
pp. 677–693, doi:10.1016/j.ic.2009.07.004.

[6] Arnaud Da Costa Lopes (2011):Propriétés de jeux multi-agents. Phd thesis, École normale supérieure de
Cachan.

98 Towards an Updatable Strategy Logic

[7] Arnaud Da Costa Lopes, François Laroussinie & Nicolas Markey (2010):ATL with Strategy Contexts: Ex-
pressiveness and Model Checking. In: FSTTCS, pp. 120–132, doi:10.4230/LIPIcs.FSTTCS.2010.120.

[8] Fabio Mogavero, Aniello Murano, Giuseppe Perelli & Moshe Y. Vardi (2011):Reasoning About Strategies:
On the Model-Checking Problem. CoRR abs/1112.6275. Available athttp://arxiv.org/abs/1112.
6275.

[9] Fabio Mogavero, Aniello Murano, Giuseppe Perelli & Moshe Y. Vardi (2012):What Makes Atl* Decidable?
A Decidable Fragment of Strategy Logic. In: CONCUR, pp. 193–208, doi:10.1007/978-3-642-32940-1_
15.

[10] Fabio Mogavero, Aniello Murano & Moshe Y. Vardi (2010):Reasoning about strategies. In: FSTTCS, 8, pp.
133–144, doi:10.4230/LIPIcs.FSTTCS.2010.133.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 99–105, doi:10.4204/EPTCS.112.15

c© Hélène Kirchner
This work is licensed under the
Creative Commons Attribution License.

A rewriting point of view on strategies

Hélène Kirchner
Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex France
e-mail:Helene.Kirchner@inria.fr

This paper is an expository contribution reporting on published work. It focuses on an approach fol-
lowed in the rewriting community to formalize the concept ofstrategy. Based on rewriting concepts,
several definitions of strategy are reviewed and connected:in order to catch the higher-order nature
of strategies, a strategy is defined as a proof term expressedin the rewriting logic or in the rewriting
calculus; to address in a coherent way deduction and computation, a strategy is seen as a subset of
derivations; and to recover the definition of strategy in sequential path-building games or in functional
programs, a strategy is considered as a partial function that associates to a reduction-in-progress, the
possible next steps in the reduction sequence.

1 Introduction

Strategies frequently occur in automated deduction and reasoning systems and more generally are used
to express complex designs for control in modeling, proof search, program transformation, SAT solving
or security policies. In these domains, deterministic rule-based computations or deductions are often not
sufficient to capture complex computations or proof developments. A formal mechanism is needed, for
instance, to sequentialize the search for different solutions, to check context conditions, to request user
input to instantiate variables, to process subgoals in a particular order, etc. This is the place where the
notion of strategy comes in.

This paper deliberately focuses on an approach followed in the rewriting community to formalize a
notion of strategy relying on rewriting logic [17] and rewriting calculus [7] that are powerful formalisms
to express and study uniformly computations and deductionsin automated deduction and reasoning sys-
tems. Briefly speaking, rules describe local transformations and strategies describe the control of rule
application. Most often, it is useful to distinguish between rules for computations, where a unique normal
form is required and where the strategy is fixed, and rules fordeductions, in which case no confluence
nor termination is required but an application strategy is necessary. Regarding rewriting as a relation
and considering abstract rewrite systems leads to considerderivation tree exploration: derivations are
computations and strategies describe selected computations.

Based on rewriting concepts, that are briefly recalled in Section 2, several definitions of strategy are
reviewed and connected. In order to catch the higher-order nature of strategies, a strategy is first defined
as a proof term expressed in rewriting logic in Section 3 thenin rewriting calculus in Section 4. In
Section 5, a strategy is seen as a set of paths in a derivation tree; then to recover the definition of strategy
in sequential path-building games or in functional programs, a strategy is considered as a partial function
that associates to a reduction-in-progress, the possible next steps in the reduction sequence. In this paper,
the goal is to show the progression of ideas and definitions ofthe concept, as well as their correlations.

100 A rewriting point of view on strategies

2 Rewriting

Since the 80s, many aspects of rewriting have been studied inautomated deduction, programming lan-
guages, equational theory decidability, program or proof transformation, but also in various domains such
as chemical or biological computing, plant growth modeling, etc. In all these applications, rewriting def-
initions have the same basic ingredients. Rewriting transforms syntactic structures that may be words,
terms, propositions, dags, graphs, geometric objects likesegments, and in general any kind of structured
objects. Transformations are expressed with patterns or rules. Rules are built on the same syntax but with
an additional set of variables, sayX , and with a binder⇒, relating the left-hand side and the right-hand
side of the rule, and optionally with a condition or constraint that restricts the set of values allowed for
the variables. Performing the transformation of a syntactic structuret is applying the rule labeledℓ on t,
which is basically done in three steps: (1) match to select a redex oft at positionp denotedt|p (possibly
modulo some axioms, constraints,...); (2) instantiate therule variables by the result(s) of the matching
substitutionσ ; (3) replace the redex by the instantiated right-hand side.Formally: t rewrites tot ′ using
the ruleℓ : l ⇒ r if t|p = σ(l) andt ′ = t[σ(r)]p. This is denotedt−→p,ℓ,σ t ′.

In this process, there are many possible choices: the rule itself, the position(s) in the structure, the
matching substitution(s). For instance, one may choose to apply a rule concurrently at all disjoint posi-
tions where it matches, or using matching modulo an equational theory like associativity-commutativity,
or also according to some probability.

3 Rewriting logic

The Rewriting Logic is due to J. Meseguer and N. Martı́-Oliet[17].
As claimed onhttp://wrla2012.lcc.uma.es/:

Rewriting logic (RL) is a natural model of computation and anexpressive semantic framework for
concurrency, parallelism, communication, and interaction. It can be used for specifying a wide range
of systems and languages in various application fields. It also has good properties as a metalogical
framework for representing logics. In recent years, several languages based on RL (ASF+SDF, CafeOBJ,
ELAN, Maude) have been designed and implemented.

In Rewriting Logic, the syntax is based on a set of termsT (F) built with an alphabetF of function
symbols with arities, a theory is given by a setR of labeled rewrite rules denotedℓ(x1, . . . ,xn) : l ⇒ r,
where labelsℓ(x1, . . . ,xn) record the set of variables occurring in the rewrite rule. Formulas are sequents
of the formπ : t → t ′, whereπ is a proof termrecording the proof of the sequent:R ⊢ π : t → t ′ if
π : t → t ′ can be obtained by finite application of equational deduction rules given below. In this context,
a proof termπ encodes a sequence of rewriting steps called a derivation.

Reflexivity For anyt ∈ T (F):
t : t → t

Congruence For any f ∈ F with arity(f) = n:

π1 : t1 → t ′1 . . . πn : tn → t ′n
f(π1, . . . ,πn) : f (t1, . . . , tn)→ f (t ′1, . . . , t

′
n)

Transitivity
π1 : t1 → t2 π2 : t2 → t3

π1;π2 : t1 → t3

Hélène Kirchner 101

Replacement For anyℓ(x1, . . . ,xn) : l ⇒ r ∈ R,

π1 : t1 → t ′1 . . . πn : tn → t ′n
ℓ(π1, . . . ,πn) : l(t1, . . . , tn)→ r(t ′1, . . . , t

′
n)

TheELAN language, designed in 1997, introduced the concept of strategy by giving explicit con-
structs for expressing control on the rule application [5].Beyond labeled rules and concatenation denoted
“;”, other constructs for deterministic or non-deterministic choice, failure, iteration, were also defined in
ELAN. A strategy is there defined as a set of proof terms in rewriting logic and can be seen as a higher-
order function : if the strategyζ is a set of proof termsπ, applyingζ to the termt means finding all terms
t ′ such thatπ : t → t ′ with π ∈ ζ . Since rewriting logic is reflective, strategy semantics can be defined
inside the rewriting logic by rewrite rules at the meta-level. This is the approach followed byMaude
in [8, 18].

4 Rewriting Calculus

The rewriting calculus, also calledρ-calculus, has been introduced in 1998 by Horatiu Cirstea and Claude
Kirchner [7]. As claimed onhttp://rho.loria.fr/index.html:

The rho-calculus has been introduced as a general means to uniformly integrate rewriting andλ -
calculus. This calculus makes explicit and first-class all of its components: matching (possibly modulo
given theories), abstraction, application and substitutions.

The rho-calculus is designed and used for logical and semantical purposes. It could be used with
powerful type systems and for expressing the semantics of rule based as well as object oriented paradigms.
It allows one to naturally express exceptions and imperative features as well as expressing elaborated
rewriting strategies.

Some features of the rewriting calculus are worth emphasizing here: first-order terms andλ -terms
areρ-terms (λx.t is (x⇒ t)); a rule is aρ-term as well as a strategy, so rules and strategies are abstrac-
tions of the same nature and “first-class concepts”; application generalizesβ−reduction; composition of
strategies is like function composition; recursion is expressed as inλ calculus with a recursion operator
µ .

In order to illustrate the use ofρ-calculus, let us consider the Abstract Biochemical Calculus (or
ρBio-calculus) [2]. This rewriting calculus models autonomoussystems asbiochemical programswhich
consist of the following components: collections of molecules (objects and rewrite rules), higher-order
rewrite rules over molecules (that may introduce new rewrite rules in the behaviour of the system) and
strategies for modeling the system’s evolution. A visual representation viaport graphsand an implemen-
tation are provided by the PORGY environment described in [1]. In this calculus, strategies are abstract
molecules, expressed with an arrow constructor (⇒ for rule abstraction), an application operator• and a
constant operatorstk for explicit failure.

102 A rewriting point of view on strategies

Below are examples of useful strategies inρBio-calculus:

id , X ⇒ X
fail , X ⇒ stk

seq(S1,S2) , X ⇒ S2•(S1•X)

first(S1,S2) , X ⇒ (S1•X) (stk⇒ (S2•X))•(S1•X)

try(S) , first(S, id)
not(S) , X ⇒ first(stk⇒ X,X′ ⇒ stk)•(S•X)

ifTE(S1,S2,S3) , X ⇒ first(stk⇒ S3•X,X′ ⇒ S2•X)•(S1•X)

repeat(S) , µX.try(seq(S,X))

Based on such constructions, theρBio-calculus allows failure handling, repair instructions, persistent
application of rules or strategies, and more generally strategies for autonomic computing, as described
in [3]. In [2], it is shown how to do invariant verification in biochemical programs. Thanks toρBio-
calculus, an invariant property can in many cases, be encoded as a special rule in the biochemical program
modeling the system and this rule is dynamically checked at each execution step. For instance, an
invariant of the system is encoded by a ruleG ⇒ G and the strategy verifying such an invariant is
encoded with a persistent strategyfirst(G⇒ G,X ⇒ stk). In a similar way, an unwanted occurrence
of a concrete moleculeG in the system can be modeled with the rule(G⇒ stk). And instead of yielding
failure stk, the problem can be “repaired” by associating to each property the necessary rules or strategies
to be inserted in the system in case of failure.

5 Abstract Reduction Systems

Another view of rewriting is to consider it as an abstract relation on structural objects. AnAbstract
Reduction System (ARS)[19, 15, 6] is a labeled oriented graph(O,S) with a set of labelsL . The nodes

in O are calledobjects. The oriented labeled edges inS are calledsteps: a
φ−→ b or (a,φ ,b), with source

a, target bandlabel φ . Derivations are composition of steps.

For a given ARSA , anA -derivation is denotedπ : a0
φ0−→ a1

φ1−→ a2 . . .
φn−1−−→ an or a0

π−→ an, where
n∈ N. Thesourceof π is a0 and its domainDom(π) = {a0}. Thetargetof π is an and applyingπ to a0

gives the singleton set{an}, which is denotedπ•a0 = {an}.

Abstract strategies are defined in [15] and in [6] as follows:for a given ARSA , anabstract strategy
ζ is a subset of the set of all derivations (finite or not) ofA . The notions of domain and application are
generalized as follows:Dom(ζ) =

⋃
π∈ζ Dom(π) andζ •a= {b | ∃π ∈ ζ such thata

π−→ b}= {π•a | π ∈
ζ}. Playing with these definitions, [6] explored adequate definitions of termination, normal form and
confluence under strategy.

Since abstract reduction systems may involve infinite sets of objects, of reduction steps and of deriva-
tions, we can schematize them with constraints at differentlevels: (i) to describe the objects occurring
in a derivation (ii) to describe, via the labels, requirements on the steps of reductions (iii) to describe the
structure of the derivation itself (iv) to express requirements on the histories. The framework developed
in [16] defines a strategyζ as all instancesσ(D) of a derivation schemaD such thatσ is solution of a
constraintC involving derivation variables, object variables and label variables. As a simple example,
the infinite set of derivations of length one that transforma into f (an) for all n∈N, wherean = a∗ . . .∗a
(n times), is simply described by:(a→ f (X) | X ∗a=A a∗X), where=A indicates that the constraint is
solved modulo associativity of the operator∗. This very general definition of abstract strategies is called

Hélène Kirchner 103

extensionalin [6] in the sense that a strategy is defined explicitly as a set of derivations of an abstract re-
duction system. The concept is useful to understand and unify reduction systems and deduction systems
as explored in [15].

But abstract strategies do not capture another point of view, also frequently adopted in rewriting:
a strategy is a partial function that associates to a reduction-in-progress, the possible next steps in the
reduction sequence. Here, the strategy as a function depends only on the object and the derivation so far.
This notion of strategy coincides with the definition of strategy in sequential path-building games, with
applications to planning, verification and synthesis of concurrent systems [9]. This remark leads to the
following intensionaldefinition given in [6]. The essence of the idea is that strategies are considered as
a way of constraining and guiding the steps of a reduction. Soat any step in a derivation, it should be
possible to say whether a contemplated next step obeys the strategyζ . In order to take into account the
past derivation steps to decide the next possible ones, the history of a derivation has to be memorized and
available at each step. Through the notion of traced-object[α]a= [(a0,φ0), . . . ,(an,φn)]a in O [A], each

objecta memorizes how it has been reached with the traceα .
An intensional strategyfor A = (O,S) is a partial functionλ from O [A] to 2S such that for every

traced object[α]a, λ ([α]a)⊆ {π ∈ S | Dom(π) = a}. If λ ([α]a) is a singleton, then the reduction step

underλ is deterministic.
As described in [6], an intensional strategyλ naturally generates an abstract strategy, called its

extension: this is the abstract strategyζλ consisting of the following set of derivations:

∀n∈ N, π : a0
φ0−→ a1

φ1−→ a2 . . .
φn−1−−→ an ∈ ζλ iff ∀ j ∈ [0,n], (a j

φ j−→ a j+1) ∈ λ ([α]a j).
This extension may obviously contain infinite derivations;in such a case it also contains all the finite
derivations that are prefixes of the infinite ones, and so is closed under taking prefixes.

A special case are memoryless strategies, where the function λ does not depend on the history of the
objects. This is the case of many strategies used in rewriting systems, as shown in the next example. Let
us consider an abstract reduction systemA where objects are terms, reduction is term rewriting with a
rewrite rule in the rewrite system, and labels are positionswhere the rewrite rules are applied. Let us
consider an order< on the labels which is the prefix order on positions. Then the intensional strategy

that corresponds to innermost rewriting isλinn(t) = {π : t
p−→ t ′ | p= max({p′ | t

p′−→ t ′ ∈ S })}. When a
lexicographic order is used, the classicalrightmost-innermoststrategy is obtained.

Another example, to illustrate the interest of traced objects, is the intensional strategy that restricts
the derivations to be of bounded lengthk. Its definition makes use of the size of the traceα , denoted|α |:
λltk([α]a) = {π | π ∈S , Dom(π) = a, |α |< k−1}. However, as noticed in [6], the fact that intensional
strategies generate only prefix closed abstract strategiesprevents us from computing abstract strategies
that look straightforward: there is no intensional strategy that can generate a set of derivations of length
exactlyk. Other solutions are provided in [6].

6 Conclusion

A lot of interesting questions about strategies are yet open, going from the definition of this concept
and the interesting properties we may expect to prove, up to the definition of domain specific strategy
languages. As further research topics, two directions seemreally interesting to explore:
- The connection with Game theory strategies. In the fields ofsystem design and verification,gameshave
emerged as a key tool. Such games have been studied since the first half of 20th century in descriptive
set theory [14], and they have been adapted and generalized for applications in formal verification; intro-

104 A rewriting point of view on strategies

ductions can be found in [13, 20]. It is worth wondering whether the coincidence of the term “strategy”
in the domains of rewriting and games is more than a pun. It should be fruitful to explore the connection
and to be guided in the study of the foundations of strategiesby some of the insights in the literature of
games.
- Proving properties of strategies and strategic reductions. A lot of work has already begun in the rewrit-
ing community and have been presented in journals, workshops or conferences of this domain. For
instance, properties of confluence, termination, or completeness for rewriting under strategies have been
addressed, either based on schematization of derivation trees, as in [12], or by tuning proof methods to
handle specific strategies (innermost, outermost, lazy strategies) as in [10, 11]. Other approaches as [4]
use strategies transformation to equivalent rewrite systems to be able to reuse well-known methods. Fi-
nally, properties of strategies such as fairness or loop-freeness could be worthfully explored by making
connections between different communities (functional programming, proof theory, verification, game
theory,...).

Acknowledgements The results presented here are based on pioneer work in theELAN language de-
signed in the Protheo team from 1997 to 2002. They rely on joint work with many people, in particular
Marian Vittek and Peter Borovanský, Claude Kirchner and Florent Kirchner, Dan Dougherty, Horatiu
Cirstea and Tony Bourdier, Oana Andrei, Maribel Fernandez and Olivier Namet. I am grateful to José
Meseguer and to the members of the PROTHEO and the PORGY teams, for many inspiring discussions
on the topics of this talk.

References

[1] Oana Andrei, Maribel Fernández, Hélène Kirchner, Guy Melançon, Olivier Namet & Bruno Pinaud (2011):
PORGY: Strategy-Driven Interactive Transformation of Graphs. In Rachid Echahed, editor:TERMGRAPH,
EPTCS48, pp. 54–68. Available athttp://dx.doi.org/10.4204/EPTCS.48.7.

[2] Oana Andrei & Hélène Kirchner (2009):A Port Graph Calculus for Autonomic Computing and Invariant
Verification. Electronic Notes In Theoretical Computer Science253(4), pp. 17–38, doi:10.1016/j.entcs.
2009.10.015.

[3] Oana Andrei & Hélène Kirchner (2009):A Higher-Order Graph Calculus for Autonomic Computing. In
Marina Lipshteyn, Vadim E. Levit & Ross M. McConnell, editors: Graph Theory, Computational Intelligence
and Thought, Lecture Notes in Computer Science5420, Springer, pp. 15–26. Available athttp://dx.doi.

org/10.1007/978-3-642-02029-2_2.

[4] Emilie Balland, Pierre-Etienne Moreau & Antoine Reilles (2012):Effective strategic programming for Java
developers. Software: Practice and Experience, doi:10.1002/spe.2159.

[5] Peter Borovanský, Claude Kirchner, Hélène Kirchner& Pierre-Etienne Moreau (2002):ELAN from
a rewriting logic point of view. Theoretical Computer Science2(285), pp. 155–185, doi:10.1016/
S0304-3975(01)00358-9.

[6] Tony Bourdier, Horatiu Cirstea, Daniel J. Dougherty & H´elène Kirchner (2009):Extensional and Intensional
Strategies. In Maribel Fernández, editor:WRS, EPTCS15, pp. 1–19. Available athttp://dx.doi.org/
10.4204/EPTCS.15.1.

[7] Horatiu Cirstea & Claude Kirchner (2001):The rewriting calculus — Part Iand II . Logic Journal of the
Interest Group in Pure and Applied Logics9(3), pp. 339–410, doi:10.1093/jigpal/9.3.339.

[8] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer & Car-
olyn L. Talcott, editors (2007):All About Maude - A High-Performance Logical Framework, Howto Specify,
Program and Verify Systems in Rewriting Logic. Lecture Notes in Computer Science4350, Springer.

Hélène Kirchner 105

[9] Daniel J. Dougherty (2008):Rewriting strategies and game strategies. Internal report.

[10] J. Giesl & A Middeldorp (2003):Innermost Termination of Context-Sensitive Rewriting. In: Proceedings of
the 6th International Conference on Developments in Language Theory (DLT 2002), LNCS 2450, Springer,
Kyoto, Japan, pp. 231–244, doi:10.1007/3-540-45005-X_20.

[11] Jürgen Giesl, Matthias Raffelsieper, Peter Schneider-Kamp, Stephan Swiderski & René Thiemann (2011):
Automated termination proofs for Haskell by term rewriting. ACM Trans. Program. Lang. Syst.33(2), pp.
7:1–7:39, doi:10.1145/1890028.1890030.

[12] Isabelle Gnaedig & Hélène Kirchner (2009):Termination of rewriting under strategies. ACM Trans. Comput.
Logic 10(2), pp. 1–52, doi:10.1145/1462179.1462182.

[13] Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors(2002): Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001]. Lecture Notes in Computer
Science2500, Springer.

[14] Alexander S. Kechris (1995):Classical Descriptive Set Theory. Graduate Texts in Mathematics156,
Springer, doi:10.1007/978-1-4612-4190-4.

[15] Claude Kirchner, Florent Kirchner & Hélène Kirchner(2008): Strategic Computations and Deductions. In
Christoph Benzmüller, Chad E. Brown, Jörg Siekmann & Richard Statman, editors:Reasoning in Simple
Type Theory. Festchrift in Honour of Peter B. Andrews on His 70th Birthday, Studies in Logic and the
Foundations of Mathematics17, College Publications, pp. 339–364.

[16] Claude Kirchner, Florent Kirchner & Hélène Kirchner(2010):Constraint Based Strategies. In: Proceedings
18th International Workshop on Functional and (Constraint) Logic Programming (WFLP 2009), Brasilia,
LNCS 5979, pp. 13–26, doi:10.1007/978-3-642-11999-6_2.

[17] Narciso Martı́-Oliet & José Meseguer (1996):Rewriting logic as a logical and semantic framework.
Electr. Notes Theor. Comput. Sci.4, pp. 190–225. Available athttp://dx.doi.org/10.1016/
S1571-0661(04)00040-4.

[18] Narciso Martı́-Oliet, José Meseguer & Alberto Verdejo (2008):A rewriting semantics for Maude strategies.
Electronic Notes in Theoretical Computer Science238(3), pp. 227–247, doi:10.1016/j.entcs.2009.05.
022.

[19] Vincent van Oostrom & Roel de Vrijer (2003):Term Rewriting Systems, chapter 9: Strategies.Cambridge
Tracts in Theoretical Computer Science2, Cambridge University Press.

[20] Igor Walukiewicz (2004):A Landscape with Games in the Background. In: 19th IEEE Symposium on Logic
in Computer Science (LICS 2004), pp. 356–366, doi:10.1109/LICS.2004.1319630.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 107–113, doi:10.4204/EPTCS.112.16

c© Benedikt Brütsch
This work is licensed under the
Creative Commons Attribution License.

Synthesizing Structured Reactive Programs
via Deterministic Tree Automata

Benedikt Brütsch
RWTH Aachen University, Lehrstuhl für Informatik 7, Germany

bruetsch@automata.rwth-aachen.de

Existing approaches to the synthesis of reactive systems typically involve the construction of transi-
tion systems such as Mealy automata. However, in order to obtain a succinct representation of the
desired system, structured programs can be a more suitable model. In 2011, Madhusudan proposed
an algorithm to construct a structured reactive program for a given ω-regular specification without
synthesizing a transition system first. His procedure is based on two-way alternating ω-automata on
finite trees that recognize the set of ”correct” programs.

We present a more elementary and direct approach using only deterministic bottom-up tree au-
tomata that compute so-called signatures for a given program. In doing so, we extend Madhusudan’s
results to the wider class of programs with bounded delay, which may read several input symbols
before producing an output symbol (or vice versa). As a formal foundation, we inductively define a
semantics for such programs.

1 Introduction

Algorithmic synthesis is a rapidly developing field with many application areas such as reactive sytems,
planning and economics. Most approaches to the synthesis of reactive systems, for instance [2, 12, 11, 8],
revolve around synthesizing transition systems such as Mealy or Moore automata. Unfortunately, the
resulting transition systems can be very large. This has motivated the development of techniques for the
reduction of their state space (for example, [6]). Furthermore, the method of bounded synthesis [14, 4]
can be used to synthesize minimal transition systems by iteratively increasing the bound on the size of
the resulting system until a solution is found. However, it is not always possible to obtain small transition
systems. For example, for certain specifications in linear temporal logic (LTL), the size of the smallest
transition systems satisfying these specifications is doubly exponential in the length of the formula [13].

Aminof, Mogavero and Murano [1] provide a round-based algorithm to synthesize hierarchical tran-
sition systems, which can be exponentially more succinct than corresponding ”flat” transition systems.
The desired system is constructed in a bottom-up manner: In each round, a specification is provided and
the algorithm constructs a corresponding hierarchical transition system from a given library of available
components and the hierarchical transition systems created in previous rounds. Thus, in order to ob-
tain a small system in the last round, the specifications in the previous rounds have to be chosen in an
appropriate way.

Current techniques for the synthesis of (potentially) succinct implementations in the form of circuits
or programs typically proceed in an indirect way, by converting a transition system into such an imple-
mentation. For example, Bloem et al. [3] first construct a symbolic representation (a binary decision
diagram) of an appropriate transition system and then extract a corresponding circuit. However, this
indirect approach does not necessarily yield a succinct result.

108 Synthesizing Structured Reactive Programs via Deterministic Tree Automata

Madhusudan addresses this issue in [10], where he proposes a procedure to synthesize programs
without computing a transition system first. He considers structured reactive programs over a given
set of Boolean variables, which can be significantly smaller (regarding the length of the program code)
than equivalent transition systems. To some degree, these programs separate control flow from memory.
Such a separation can also be found in a related approach that has recently been introduced by Gelderie
[5], where strategies for infinite games are represented by strategy machines, which are equipped with
control states and a memory tape.

Given a finite set of Boolean variables and a nondeterministic Büchi automaton recognizing the
complement of the specification, Madhusudan constructs a two-way alternating ω-automaton on finite
trees that recognizes the set of all programs over these variables that satisfy the specification. This
automaton can be transformed into a nondeterministic tree automaton (NTA) to check for emptiness and
extract a minimal program (regarding the height of the corresponding tree) from that set. In contrast to
the transition systems constructed by classical synthesis algorithms, the synthesized program does not
depend on the specific syntactic formulation of the specification, but only on its meaning.

In this paper, we present a direct construction of a deterministic bottom-up tree automaton (DTA)
recognizing the set of correct programs, without a detour via more intricate types of automata. The
DTA inductively computes a representation of the behavior of a given program in the form of so-called
signatures. A similar representation is used by Lustig and Vardi in their work on the synthesis of reactive
systems from component libraries [9] to characterize the behavior of the components.

Our approach is not limited to programs that read input and write output in strict alternation, but
extends Madhusudan’s results to the more general class of programs with bounded delay: In general, a
program may read multiple input symbols before writing the next output symbol, or vice versa, causing a
delay between the input sequence and the output sequence. In a game-theoretic context, such a program
corresponds to a strategy for a controller in a game against the environment where in each move the
controller is allowed to either choose at least one output symbol or skip and wait for the next input (see
[7]). We consider programs that never cause a delay greater than a given bound k ∈ N.

For a fixed k, the complexity of our construction matches that of Madhusudan’s algorithm. In particu-
lar, the size of the resulting DTA is exponential in the size of the given nondeterministic Büchi automaton
recognizing the complement of the specification, and doubly exponential in the number of program vari-
ables. In fact, we establish a lower bound, showing that the set of all programs over n Boolean variables
that satisfy a given specification cannot even be recognized by an NTA with less than 22n−1

states, if any
such programs exist. However, note that a DTA (or NTA) accepting precisely these programs enables us
to extract a minimal program for the given specification and the given set of program variables. Hence,
the synthesized program itself might be rather small.

To lay a foundation for our study of the synthesis of structured reactive programs, we define a formal
semantics for such programs, which is only informally indicated by Madhusudan. To that end, we
introduce the concept of Input/Output/Internal machines (IOI machines), which are composable in the
same way as structured programs. This allows for an inductive definition of the semantics.

2 Syntax and Semantics of Structured Programs

We consider a slight modification of the structured programming language defined in [10], using only
single Boolean values as input and output symbols to simplify notation. Expressions and programs over
a finite set B of Boolean variables are defined by the following grammar, where b ∈ B:

Benedikt Brütsch 109

〈expr〉 ::= true | false | b | 〈expr〉∧ 〈expr〉 | 〈expr〉∨ 〈expr〉 | ¬〈expr〉
〈prog〉 ::= b := 〈expr〉 | input b | output b | 〈prog〉;〈prog〉

if 〈expr〉 then 〈prog〉 else 〈prog〉 | while 〈expr〉 do 〈prog〉
Intuitively, “input b” reads a Boolean value and stores it in the variable b. Conversely, “output b”

writes the current value of b. To define a formal semantics we associate with each program a so-called
IOI machine. An IOI machine is a transition system with designated entry and exit states. It can have
input, output and internal transitions, with labels of the form (ain,ε), (ε,aout) or (ε,ε), respectively,
where ain,aout ∈ B= {0,1}. An IOI machine is equipped with a finite set B of Boolean variables, whose
valuation is uniquely determined at each state. A valuation is a function σ : B→B that assigns a Boolean
value to each variable.

The associated IOI machine of an atomic program (i.e., an input statement, output statement or
assignment) has one entry state and exit state for each possible variable valuation, and its transitions lead
from entry states to exit states. For example, at each entry state of the associated IOI machine of an
atomic program of the form “input b”, there are two outgoing input transitions – one for each possible
input symbol. The target of such an input transition is the exit state whose variable valuation is obtained
by replacing the value of b with the respective input symbol. The IOI machine of a composite program
can be constructed inductively from the IOI machines of its subprograms, leveraging their entry and exit
states and the variable valuations of these states.

A computation % of a program is a finite or infinite sequence of subsequent transitions of the corre-
sponding IOI machine:

%= q1
(a1,b1)−−−−→ q2

(a2,b2)−−−−→ q3
(a3,b3)−−−−→ ·· ·

The label of % is the pair of finite or infinite words (a1a2a3 . . . , b1b2b3 . . .) ∈ (B∗ ∪Bω)× (B∗ ∪Bω).
An initial computation starts at the unique entry state where all variables have the value 0. The infinite
behavior 〈〈p〉〉 of a program p is the set of infinite input/output sequences (α,β) ∈ Bω ×Bω that can
be produced by an initial computation of p. Furthermore, we call a program reactive if all its initial
computations can be extended to infinite computations that yield an infinite input and output sequence.

At any given time during a computation % as above, the length of the input sequence a1a2 . . .ai and the
output sequence b1b2 . . .bi might differ. The supremum of these length differences along a computation
is called the delay of the computation. If the delay of a computation does not exceed a given bound k ∈N
then we call this computation k-bounded. A program is said to be k-bounded if all its computations are k-
bounded. By restricting the infinite behavior of a program p to labels of k-bounded initial computations,
we obtain the k-bounded infinite behavior 〈〈p〉〉k of p.

3 Solving the Synthesis Problem Using Deterministic Tree Automata

The synthesis problem for structured reactive programs with bounded delay can be formulated as follows:
Given an ω-regular specification R ⊆ (B×B)ω representing the permissible input/output sequences, a
finite set of Boolean variables B and a delay bound k ∈ N, the task is to construct a structured reactive
program p over B with k-bounded delay such that 〈〈p〉〉 ⊆ R – or detect that no such program exists.
(However, our results can easily be generalized to finite input and output alphabets other than B by
allowing input and output statements that process multiple Boolean values as in [10].) In the following we
assume that the specification R is provided in the form of a nondeterministic Büchi automaton (NBA) AR
over the alphabet B×B that recognizes the complement of the specification, i.e., L (AR) = (B×B)ω \R,
which is always possible for ω-regular specifications.

110 Synthesizing Structured Reactive Programs via Deterministic Tree Automata

Our synthesis procedure is based on the fact that programs can be viewed as trees. Figure 1 shows
an example for a tree representation of a program. We use deterministic bottom-up tree automata (DTAs,
see, for example, [15]) to recognize sets of programs. More specifically, we show the following theorem:
Theorem 1. Let B be a finite set of Boolean variables, let k ∈ N and let AR be a nondeterministic Büchi
automaton recognizing the complement of a specification R ⊆ (B×B)ω . We can construct a DTA that
accepts a tree p iff p is a reactive program over B with k-bounded delay and 〈〈p〉〉 ⊆ R, such that the size
of this DTA is doubly exponential in |B| and k and exponential in the size of AR.

while true do {

input b1;

b2 := b2∨b1;

output b2
}

while

true ;

input b1 ;

assign-b2

∨
b1 b2

output b2

Figure 1: Example: A program and its tree representation.

An emptiness test on this DTA yields a solution to the synthesis problem. We obtain the desired tree
automaton by intersecting three DTAs: The first DTA Bsat(B,k,AR) recognizes the set of programs over
B whose k-bounded computations satisfy the specification R. That means, a program p is accepted iff
〈〈p〉〉k ⊆ R. The second DTA Breactive(B) recognizes the reactive programs over B. Finally, we use a
third DTA Bdelay(B,k) to recognize the programs over B with k-bounded delay. We only consider the
construction of Bsat(B,k,AR) here, as the other two DTAs can be constructed in a very similar way.

The DTA Bsat(B,k,AR) evaluates a given program p in a bottom-up manner, thereby assigning one
of its states to each node of the program tree. The state reached at the root node must provide enough
information to decide whether 〈〈p〉〉k ⊆ R, or equivalently, whether 〈〈p〉〉k∩L (AR) = /0. To that end, we
are interested in the possible runs of AR on the input/output sequences generated by the program. Thus,
we consider pairs of program computations and corresponding runs of AR, which we call co-executions.
Intuitively, Bsat(B,k,AR) inductively computes a representation of the possible co-executions of a given
program and AR. We define these representations, called co-execution signatures, in the following.

The beginning and end of a co-execution can be indicated by a valuation of the program variables and
a state of AR. However, we have to consider the following: The input sequence of a computation might
be longer or shorter than its output sequence, but a run of AR only consumes input and output sequences
of the same length. The suffix of the input/output sequence after the end of the shorter sequence, called
the overhanging suffix, is hence still waiting to be consumed by AR. Thus, we indicate the start and end
of a co-execution by tuples of the form γ = (σ ,s,u,v), called co-configurations, where σ is a variable
valuation, s is a state of AR and (u,v) ∈ (B∗×{ε})∪ ({ε}×B∗) is an overhanging suffix. Since we are
only interested in k-bounded computations, we only consider co-configurations with |u| ≤ k and |v| ≤ k.
The set of these co-configurations for a given set of variables B and a given NBA AR is denoted by
CoCfgk(B,AR).

A finite co-execution is called complete if the program terminates at the end of the computation. The
finite co-execution signature cosigfin(p,AR,k) of a program p (with respect to AR) is a relation consisting
of tuples of the form (γ, f ,γ ′) with f ∈ B, which indicate that there exists a complete k-bounded co-
execution that starts with the co-configuration γ and ends with γ ′ such that the corresponding run of

Benedikt Brütsch 111

AR visits a final state iff f = 1. The infinite co-execution signature cosig∞(p,AR,k) of p is a set of co-
configurations with γ ∈ cosig∞(p,AR,k) iff there exists an infinite k-bounded co-execution starting with
γ such that the run of AR visits a final state infinitely often. We use pairs consisting of a finite and infinite
co-execution signature as states of the DTA Bsat(B,k,AR). The size of the DTA is hence determined by
the number of possible co-execution signatures, which is doubly exponential in the number of variables
and k and exponential in the size of AR. For a fixed k, this matches the complexity of Madhusudan’s
construction [10].

If σ0 is the initial variable valuation (where all variables have the value 0) and s0 is the initial state
of AR, then (σ0,s0,ε,ε) ∈ cosig∞(p,AR,k) iff there is an initial k-bounded computation of p such that
some corresponding run of AR visits a final state infinitely often, so cosig∞(p,AR,k) is indeed sufficient
to decide whether 〈〈p〉〉k ⊆ R. It remains to be shown that the co-execution signatures can be computed
inductively. Exemplarily, we consider the case of programs of the form p = “while e do p1”. First,
we construct a representation cosig∗e(p1,AR,k) of all finite sequences of consecutive co-executions of p1
that are compatible with the loop condition e. To that end, we consider only those tuples (γ, f ,γ ′) in
cosigfin(p1,AR,k) where the variable valuation in γ satisfies the loop condition e, and compute the re-
flexive transitive closure of the resulting relation. Formally, we have cosig∗e(p1,AR,k) = closure(C) with
C =

{
((σ ,s,u,v), f ,γ ′) ∈ cosigfin(p1,AR,k) | σ ∈ JeK

}
. Here, JeK denotes the set of variable valuations

that satisfy e, and closure(C) is the smallest relation D⊆ CoCfgk(B,AR)×B×CoCfgk(B,AR) such that

• (γ,0,γ) ∈ D for all γ ∈ CoCfgk(B,AR), and

• (γ, f1,γ ′) ∈ D, (γ ′, f2,γ ′′) ∈C implies (γ,max{ f1, f2} ,γ ′′) ∈ D.

Using cosig∗e(p1,AR,k), the co-execution signatures for p can be computed by the following reason-
ing: A finite co-execution of p = “while e do p1” (and AR) can be decomposed into a finite sequence
of co-executions of p1. An infinite co-execution of p can either eventually stay inside a loop iteration for-
ever or traverse infinitely many iterations. It can therefore be decomposed either into a finite sequence of
co-executions of p1 followed by an infinite co-execution of p1, or into a finite sequence of co-executions
of p1 followed by a cycle of co-executions of p1, leading back to a previous co-configuration. Thus, we
obtain the following formal representation of the co-execution signatures for p:

• (γ, f ,(σ ′,s′,u′,v′)) ∈ cosigfin(p,AR,k) iff (γ, f ,(σ ′,s′,u′,v′)) ∈ cosig∗e(p1,AR,k) and σ ′ /∈ JeK.

• γ ∈ cosig∞(p,AR,k) iff at least one of the following holds:

– There exist γ ′ = (σ ′,s′,u′,v′) ∈ CoCfgk(B,AR) and f ∈ B
such that (γ, f ,γ ′) ∈ cosig∗e(p1,AR,k), σ ′ ∈ JeK and γ ′ ∈ cosig∞(p1,AR,k).

– There exist γ ′ = (σ ′,s′,u′,v′) ∈ CoCfgk(B,AR) and f ∈ B
such that (γ, f ,γ ′) ∈ cosig∗e(p1,AR,k), σ ′ ∈ JeK and (γ ′,1,γ ′) ∈ cosig∗e(p1,AR,k).

4 Lower Bound for the Size of the Tree Automata

We show the following lower bound for the size of any nondeterministic tree automaton (NTA) recog-
nizing the desired set of programs:

Theorem 2. Let B be a set of n Boolean variables, let k ∈N and let R⊆ (B×B)ω be a specification that
is realizable by some program over B with k-bounded delay. Let C be an NTA that accepts a tree p iff p
is a reactive program over B with k-bounded delay and 〈〈p〉〉 ⊆ R. Then C has at least 22n−1

states.

112 Synthesizing Structured Reactive Programs via Deterministic Tree Automata

For a sketch of the proof, consider a set of Boolean variables B = {b1, . . . ,bn}. There are 22n−1

functions of the type Bn−1→ B. Each of these functions can be implemented by a program that checks
the values of b1, . . . ,bn−1 and sets bn to the corresponding function value. An NTA as in Theorem 2 must
be able to distinguish all of these programs. Otherwise, let pi and p j be two such programs that cannot be
distinguished by the NTA. We could then construct a program that satisfies the specification and contains
pi as a subprogram, but runs into a non-reactive infinite loop if this subprogram is replaced by p j. The
NTA would accept both variants, including the non-reactive program, which contradicts the premise.

5 Conclusion

The contributions of this paper are threefold, advancing the study of structured reactive programs: We
introduced a formal semantics for structured reactive programs in the sense of [10]. Furthermore, we
presented a new synthesis algorithm for structured reactive programs with bounded delay, using the
elementary concept of deterministic bottom-up tree automata. Finally, we showed a lower bound for the
size of any nondeterministic tree automaton that recognizes the set of specification-compliant programs,
emphasizing the importance of choosing a small yet still sufficient set of program variables. Estimating
the number of Boolean variables that are needed to realize a given specification is a major open problem.
While [13] implies an exponential upper bound for the required number of variables in the case of LTL
specifications, a corresponding lower bound is still to be determined.

Acknowledgments. The author would like to thank Wolfgang Thomas for his helpful advice and Mar-
cus Gelderie for fruitful discussions.

References
[1] Benjamin Aminof, Fabio Mogavero & Aniello Murano (2012): Synthesis of Hierarchical Systems. In Farhad

Arbab & Peter Csaba Ölveczky, editors: Formal Aspects of Component Software, Lecture Notes in Computer
Science 7253, Springer Berlin Heidelberg, pp. 42–60, doi:10.1007/978-3-642-35743-5 4.

[2] J. Richard Büchi & Lawrence H. Landweber (1969): Solving Sequential Conditions by Finite-State Strategies.
Transactions of the American Mathematical Society 138, pp. 295–311, doi:10.2307/1994916.

[3] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Martin Weiglhofer (2007):
Specify, Compile, Run: Hardware from PSL. Electronic Notes in Theoretical Computer Science 190(4), pp.
3 – 16, doi:10.1016/j.entcs.2007.09.004.

[4] Rüdiger Ehlers (2010): Symbolic Bounded Synthesis. In Tayssir Touili, Byron Cook & Paul Jackson, editors:
Computer Aided Verification, Lecture Notes in Computer Science 6174, Springer Berlin Heidelberg, pp.
365–379, doi:10.1007/978-3-642-14295-6 33.

[5] Marcus Gelderie (2012): Strategy Machines and Their Complexity. In Branislav Rovan, Vladimiro Sassone &
Peter Widmayer, editors: Mathematical Foundations of Computer Science 2012, Lecture Notes in Computer
Science 7464, Springer Berlin Heidelberg, pp. 431–442, doi:10.1007/978-3-642-32589-2 39.

[6] Marcus Gelderie & Michael Holtmann (2011): Memory Reduction via Delayed Simulation. In Johannes
Reich & Bernd Finkbeiner, editors: iWIGP, EPTCS 50, pp. 46–60, doi:10.4204/EPTCS.50.4.

[7] Michael Holtmann, Lukasz Kaiser & Wolfgang Thomas (2010): Degrees of Lookahead in Regular Infinite
Games. In Luke Ong, editor: Foundations of Software Science and Computational Structures, Lecture Notes
in Computer Science 6014, Springer Berlin Heidelberg, pp. 252–266, doi:10.1007/978-3-642-12032-9 18.

[8] Orna Kupferman & Moshe Y. Vardi (1999): Church’s Problem Revisited. The Bulletin of Symbolic Logic
5(2), pp. 245–263, doi:10.2307/421091.

Benedikt Brütsch 113

[9] Yoad Lustig & Moshe Y. Vardi (2009): Synthesis from Component Libraries. In Luca Alfaro, editor: Founda-
tions of Software Science and Computational Structures, Lecture Notes in Computer Science 5504, Springer
Berlin Heidelberg, pp. 395–409, doi:10.1007/978-3-642-00596-1 28.

[10] Parthasarathy Madhusudan (2011): Synthesizing Reactive Programs. In Marc Bezem, editor: Computer
Science Logic (CSL’11) - 25th International Workshop/20th Annual Conference of the EACSL, Leibniz
International Proceedings in Informatics (LIPIcs) 12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, pp. 428–442, doi:10.4230/LIPIcs.CSL.2011.428.

[11] Amir Pnueli & Roni Rosner (1989): On the Synthesis of a Reactive Module. In: POPL, pp. 179–190.
Available at http://doi.acm.org/10.1145/75277.75293.

[12] Michael Oser Rabin (1972): Automata on Infinite Objects and Church’s Problem. American Mathematical
Society, Boston, MA, USA.

[13] Roni Rosner (1992): Modular Synthesis of Reactive Systems. Ph.D. thesis, Weizmann Institute of Science.
[14] Sven Schewe & Bernd Finkbeiner (2007): Bounded Synthesis. In Kedar S. Namjoshi, Tomohiro Yoneda,

Teruo Higashino & Yoshio Okamura, editors: Automated Technology for Verification and Analysis, Lecture
Notes in Computer Science 4762, Springer Berlin Heidelberg, pp. 474–488, doi:10.1007/978-3-540-75596-
8 33.

[15] Wolfgang Thomas (1997): Languages, Automata, and Logic. In Grzegorz Rozenberg & Arto Salomaa,
editors: Handbook of Formal Languages, Springer Berlin Heidelberg, pp. 389–455, doi:10.1007/978-3-642-
59126-6 7.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 115–122, doi:10.4204/EPTCS.112.17

c© B. Maubert, S. Pinchinat & L. Bozzelli
This work is licensed under the Creative Commons
Attribution-Noncommercial License.

The Complexity of Synthesizing Uniform Strategies

Bastien Maubert
IRISA

Université de Rennes 1
Rennes, France

bastien.maubert@irisa.fr

Sophie Pinchinat
IRISA

Université de Rennes 1
Rennes, France

sophie.pinchinat@irisa.fr

Laura Bozzelli
Facultad de Informática

UPM
Madrid, Spain

laura.bozzelli@fi.upm.es

We investigateuniformity propertiesof strategies. These properties involve sets of plays in order
to express useful constraints on strategies that are notµ-calculus definable. Typically, we can state
that a strategy is observation-based. We propose a formal language to specify uniformity proper-
ties, interpreted over two-player turn-based arenas equipped with a binary relation between plays.
This way, we capturee.g.games with winning conditions expressible in epistemic temporal logic,
whose underlying equivalence relation between plays reflects the observational capabilities of agents
(for example, synchronous perfect recall). Our framework naturally generalizes many other situa-
tions from the literature. We establish that the problem of synthesizing strategies under uniformity
constraints based on regular binary relations between plays is non-elementary complete.

1 Introduction

In extensive infinite duration games, the arena is represented as a graph whose vertices denote positions
of players and whose paths denote plays. In this context, a strategy of a player is a mapping prescribing
to this player which next position to select provided she hasto make a choice at this current point of the
play. As mathematical objects, strategies can be seen as infinite trees obtained by pruning the infinite
unfolding of the arena according to the selection prescribed by this strategy; outcomes of a strategy are
therefore the branches of the trees.

Strategies of players are not arbitrary in general, since players aim at achieving some objectives.
Infinite-duration game models have been intensively studied for their applications in computer science
[3] and logic [13]. First, infinite-duration games provide anatural abstraction of computing systems’
non-terminating interaction [2] (think of a communicationprotocol between a printer and its users, or
control systems). Second, infinite-duration games naturally occur as a tool to handle logical systems for
the specification of non-terminating behaviors, such as forthe propositionalµ-calculus [10], leading to
a powerful theory of automata, logics and infinite games [13]and to the development of algorithms for
the automatic verification (“model-checking”) and synthesis of hardware and software systems. In both
cases, outcomes of strategies are submitted toω-regular conditions representing some desirable property
of a system.

Additionally, the cross fertilization of multi-agent systems and distributed systems theories has led
to equip logical systems with additional modalities, such as epistemic ones, to capture uncertainty [27,
21, 11, 24, 20, 15], and more recently, these logical systemshave been adapted to game models in order
to reason about knowledge, time and strategies [17, 19, 9]. The whole picture then becomes intricate,
mainly because time and knowledge are essentially orthogonal, yielding a complex theoretical universe
to reason about. In order to understand to which extent knowledge and time are orthogonal, the angle of
view where strategies are infinite trees is helpful: Time is about thevertical dimension of the trees as it
relates to the ordering of encountered positions along plays (branches) and to the branching in the tree.

116 Synthesizing Uniform Strategies

On the contrary, Knowledge is about thehorizontaldimension, as it relates plays carrying, e.g., the same
information.

As far as we know, this horizontal dimension, although extensively studied when interpreted as
knowledge or observation [4, 17, 19, 8, 1, 9], has not been addressed in its generality. In this paper,
we aim at providing a unified setting to handle it. We introduce the generic notion ofuniformity proper-
tiesand associated so-calleduniform strategies(those satisfying uniformity properties). Some notions of
“uniform” strategies have already been used, e.g., in the setting of strategic logics [29, 5, 19] and in the
evaluation game of Dependence Logic [28], which both fall into the general framework we present here.

We use a simple framework with two-player turn-based arenasand where information lies in posi-
tions, but the approach can be extended to other settings. Additionally, although uniformity properties
can be described in a set-theoretic framework, we propose the logical formalismIRLTL which can be
exploited to address fundamental automated techniques such as the verification of uniformity properties
and the synthesis of uniform strategies – arbitrary uniformity properties are in general hopeless for au-
tomation. The formalism we use combines the Linear-time Temporal LogicLTL [12] and a new modality
IR (for “for all related plays”), the semantics of which is given by a binary relation between plays. Modal-
ity IR generalizes the knowledge operator “K” of [15] for the epistemic relations of agents in Interpreted
Systems. The semantic binary relations between plays are very little constrained: they are not neces-
sarily equivalences, to capture,e.g.plausibility (pre)orders one finds in doxastic logic [16], neither are
they knowledge-based, to capture particular strategies ingames where epistemic aspects are irrelevant.
Formulas of the logic are interpreted over outcomes of a strategy. TheIR modality allows to universally
quantify over all plays that are in relation with the currentplay. Distinguishing between the universal
quantification over all plays in the game and the universal quantification over all the outcomes in the
strategy tree yields two kinds of uniform strategies: thefully-uniform strategiesand thestrictly-uniform
strategies.

As extensively demonstrated in [22], uniform properties turn out to be many in the literature: they
occur in games with imperfect information, in games with opacity conditions and more generally with
epistemic conditions, as non-interference properties of computing systems, as diagnosability of discrete-
event systems, in the game semantics of Dependence Logic.

We investigate the automated synthesis of fully-uniform strategies, for the case of finite arenas and
binary relations between plays that are rational in the sense of [6]. Incidentally, all binary relations
that are involved in the relevant literature seem to follow this restriction. In this context, two problems
can be addressed: thefully-uniform strategy problemand thestrictly-uniform strategy problem, which
essentially can be formulated as “given a finite arena, a finite state transducer describing a binary relation
between plays, and a formula expressing a uniformity property, does there exist a fully-uniform (resp.
strictly-uniform) strategy for Player 1?”. From [22], the fully-uniform strategy problem is decidable but
non-elementary – since then we have established that it is non-elementary hard. The algorithm involves
an iterated non-trivial powerset construction from the arena and the finite state transducer which enables
to eliminate innermostIR modalities. Hence, the required number of iterations matches the maximum
number of nestedIR modalities of the formula expressing the uniformity property. As expected, each
powerset construction is computed in exponential time. This procedure amounts to solving an ultimate
LTL game, for which a strategy can be synthesized [25] and tracedback as a solution in the original
problem. The decidability of the strictly-uniform strategy problem is an open question.

The rest of the paper is organized in five sections. In Section2, we present the standard material
two-player turn-based arenas. We set up the framework and define uniform strategies in Section 3, and
we illustrate the notion with two examples in Section 4. Finally in Section 5, we give tight complexity
bounds for the fully-uniform strategy problem, and we discuss future work in Section 6.

B. Maubert, S. Pinchinat & L. Bozzelli 117

2 Preliminaries

We consider two-player turn-based games that are played on graphs with vertices labelled with proposi-
tions. These propositions represent the relevant information for the uniformity properties one wants to
state. From now on and for the rest of the paper, we letAPbe an infinite set ofatomic propositions.

An arenais a structureG = (V,E,v0, ℓ) whereV =V1⊎V2 is the set ofpositions, partitioned between
positions of Player 1 (V1) and those of Player 2 (V2), E ⊆ (V1×V2)∪ (V2×V1) is the set ofedges, v0 ∈V
is theinitial position andℓ : V → P(AP) is avaluation function, mapping each position to the finite set
of atomic propositions that hold in this position.Plays∗ andPlaysω are, respectively, the set of finite and
infinite plays. For an infinite playπ = v0v1 . . . andi ∈N, π[i] := vi andπ[0, i] := v0 . . .vi . For a finite play
ρ = v0v1 . . .vn, last(ρ) = vn.

A strategyfor Player 1 is a partial functionσ : Plays∗ →V that maps a finite play ending inV1 to the
next position to play. Letσ be a strategy for Player 1. We say that a playπ ∈ Playsω is induced byσ if
for all i ≥ 0 such thatπ[i] ∈V1, π[i +1] = σ(π[0, i]), and theoutcome ofσ , noted Out(σ)⊆ Playsω , is
the set of all infinite plays that are induced byσ . Definitions are similar for Player 2’s strategies.

3 Uniform strategies

We define the formal languageIRLTL to specify uniformity properties. This language enables toexpress
properties of the dynamics of plays, and resembles the Linear Temporal Logic (LTL) [12]. However,
while LTL formulas are evaluated on individual plays (paths), we wanthere to express properties on
“bundles” of plays. To this aim, we equip arenas with a binaryrelation between finite plays, and we
enrich the logic with a modalityIR that quantifies over related plays, the intended meaning of “IRϕ holds
in ρ” being “ϕ holds in every play related toρ”.

The syntax ofIRLTL is similar to that of linear temporal logic with knowledge [15]. However, we
useIR instead of the usual knowledge operatorK to emphasize that it need not be interpreted in terms of
knowledge in general, but merely as a way to state propertiesof bundles of plays. The syntax is:

ϕ ,ψ ::= p | ¬ϕ | ϕ ∧ψ | #ϕ | ϕUψ | IRϕ p∈ AP

Consider an arenaG = (V,E,v0, ℓ) and a rational relation; ⊆ Plays∗ ×Plays∗. A formula ϕ of
IRLTL is evaluated at some pointi ∈ N of an infinite playπ ∈ Playsω , within a universeΠ ⊆ Playsω .
The semantics is given by induction over formulas.

Π,π, i |= p if p∈ ℓ(π[i]) Π,π, i |= ¬ϕ if Π,π, i 6|= ϕ
Π,π, i |= ϕ ∧ψ if Π,π, i |= ϕ andΠ,π, i |= ψ Π,π, i |= #ϕ if Π,π, i +1 |= ϕ
Π,π, i |= ϕUψ if there is j ≥ i such thatΠ,π, j |= ψ and for alli ≤ k< j, Π,π,k |= ϕ
Π,π, i |= IRϕ if for all π ′ ∈ Π, j ∈N such thatπ[0, i] ; π ′[0, j], Π,π ′, j |= ϕ

From this semantics, we derive two notions of uniform strategies, which differ only in the universe the
IR modality quantifies over: Out(σ) or Playsω (with the latter, related plays not induced by the strategy
also count). The motivation for these two definitions is clear from [22] where many examples from the
literature are given.

Definition 1 LetG be an arena,; be a rational relation andϕ be an IRLTL formula. A strategyσ is:
(;,ϕ)-strictly-uniform if for all π ∈ Out(σ), Out(σ),π,0 |= ϕ ,
(;,ϕ)-fully-uniform if for all π ∈ Out(σ), Playsω ,π,0 |= ϕ .

118 Synthesizing Uniform Strategies

4 Concrete examples

In this section we illustrate our notions of strictly and fully uniform strategies defined in the previous
section with the examples of observation-based strategiesin games with imperfect information, and
games with opacity condition.

4.1 Observation-based strategies

Games with imperfect information, in general, are games in which some of the players do not know ex-
actly what is the current position of the game. Poker is an example of imperfect-information game: one
does not know which cards her opponents have in hands. One important aspect of imperfect-information
games is that not every strategy is “playable”. Indeed, a player cannot plan to play differently in sit-
uations that she is unable to distinguish. This is why players are required to use strategies that select
moves uniformly over observationally equivalent situations. This kind of strategies is sometimes called
uniform strategiesin the community of strategic logics ([29, 5, 19]), orobservation-based strategiesin
the community of computer-science oriented game theory ([8]). In fact, all the additional complexity of
solving imperfect-information games, compared to perfect-information ones, lies in this constraint put
on strategies.

We show that the notion of observation-based strategy, and hence the essence of games with imper-
fect information, can be easily embedded in our notion of uniform strategy. In two-player imperfect-
information games as studied for example in [26, 8, 7], Player 1 only partially observes the positions of
the game, such that some positions are indistinguishable toher, while Player 2 has perfect information
(the asymmetry is due to the focus being on the existence of strategies for Player 1). Arenas are labelled
directed graphs together with a finite set ofactions Act, and in each round, if the position is a nodev,
Player 1 chooses an available actiona, and Player 2 chooses a next positionv′ reachable fromv through
ana-labelled edge.

We equivalently define this framework in a manner that fits oursetting by putting Player 1’s actions
inside the positions. We have two kinds of positions, of the formv and of the form(v,a). In a positionv,
when she chooses an actiona, Player 1 actually moves to position(v,a), then Player 2 moves from(v,a)
to somev′. So an imperfect-information game arena is a structureGimp = (G ,∼) whereG = (V,E,v0, ℓ)
is a two-player game arena with positions inV1 of the form v and positions inV2 of the form (v,a).
We require thatvE(v′,a) impliesv= v′, andv0 ∈V1. For a position(v,a) ∈V2, we note(v,a).act := a.
We assume thatp1 ∈ AP, and for every actiona in Act, pa ∈ AP. p1 holds in positions belonging to
Player 1, andpa holds in positions of Player 2 where the last action chosen byPlayer 1 isa: ℓ(v) = {p1}
for v ∈ V1, ℓ(v,a) = {pa} for (v,a) ∈ V2. Finally, ∼ ⊆ V2

1 is an observational equivalence relation on
positions, that relates positions indistinguishable for Player 1. We define its extension≃ to finite plays:
v0(v0,a1)v1 . . . (vn−1,an)vn ≃ v0(v0,a′1)v

′
1 . . . (v

′
n−1,a

′
n)v

′
n if for all i > 0, vi ∼ v′i andai = a′i .

We add the classic requirement that the same actions must be available in indistinguishable positions:
for all v,v′ ∈V1, if v∼ v′ thenvE(v,a) if, and only if, v′E(v′,a). In other words, if Player 1 has different
options, she can distinguish the positions.

Definition 2 A strategyσ for Player1 is observation-basedif for all ρ ,ρ ′ ∈ v0(V2V1)
∗, ρ ≈ ρ ′ implies

σ(ρ).act= σ(ρ ′).act.

We define the formula
SameAct := G(p1 →

∨

a∈Act

IR#pa)

B. Maubert, S. Pinchinat & L. Bozzelli 119

which, informally, expresses that whenever it is Player 1’sturn to play, there is an actiona that is played
in every equivalent finite play.

Proposition 1 A strategyσ for Player1 is observation-based iff it is(≈,SameAct)-strictly-uniform.

Here we have to make use of the notion of strict uniformity, and not the full uniformity. Indeed, after
a finite playπ[0, i] ending inV1, we want to enforce that in all equivalent prefixes of infiniteplaysthat
conform to the strategy considered, Player 1 plays the same action. It would obviously make no sense to
enforce the same on equivalent prefixes of every possible play in the game, which encompass all possible
behaviours of Player 1.

Notice that in order to embed the case of players with different memory abilities,e.g. imperfect-
recall, one would just have to replace≈ with the appropriate relation.

For the moment we have not mentioned any winning condition. For a strategy, being(≈,SameAct)-
strictly-uniform only characterizes that it is “playable”for a player with imperfect information, but it does
not characterize the outcome of this strategy. However, if one considers a game with imperfect informa-
tion in which the winning condition for Player 1 is an LTL formula ϕ , then the set of(≈,SameAct∧ϕ)-
strictly-uniform strategy is exactly the set of winning observation-based strategy.

When talking about knowledge and strategic abilities, the question ofobjectivevs subjectiveability
should be raised (see [18]). The difference is basically whether a strategy is defined only on “concrete”
plays, starting from the initial position, or if it has to be defined on all “plays” starting from any position
the player confuses with the initial one. In the setting presented here, the initial position is part of the
description of the arena, hence players are assumed to know it and all plays considered start from this
position. But in order to model in this setting the case of Player 1 not knowing the initial position, one
could add a fresh artificial initial positionv′0, from which no matter the action Player 1 chooses, Player
2 can move to any position that Player 1 confuses withv0. Then, for a winning conditionϕ ∈ LTL, the
existence of an observation-based winning strategy for Player 1 fromv0 (resp.v′0) would denote objective
(resp. subjective) ability to enforceϕ .

4.2 Games with opacity condition

Games with opacity condition, studied in [23], are based on two-player imperfect-information arenas,
with Alice having perfect information as opposed to Bob who partially observes positions. In such
games, some positions are “secret” as they reveal a criticalinformation that Bob aims at discovering. We
are interested in Alice’s ability to prevent Bob from “knowing” the secret, in the epistemic sense.

More formally, assume that a propositionpS ∈ AP represents the secret. LetGin f = (G ,∼) be an
imperfect-information arena as described in Section 4.1, with a distinguished set of positionsS⊆ V1

that denotes the secret. Bob is Player 1 as he has imperfect information, and Alice is Player 2. Letting
G = (V,E,vI , ℓ), we require thatℓ−1({pS}) = S(positions labeled bypS are exactly positionsv∈ S). For
a finite playρ with last(ρ) ∈V1, Bob’s information setor knowledgeafterρ is I(ρ) := {last(ρ ′) | ρ ′ ∈
Plays∗,ρ ≈ ρ ′}. It is the set of all the positions he considers possible after observingρ . An infinite play
is winning for Bob if there exists a finite prefixρ of this play whose information set is contained inS,
i.e. I(ρ)⊆ S, otherwise Alice wins. It can easily be shown that:

Proposition 2 A strategyσ for Alice is winning if, and only if,σ is (≈,G¬IRpS)-fully-uniform.

Here we are interested in Alice’s strategies and Bob’s knowledge. Since Bob only partially observes
what Alice is playing, some plays that are not brought about by Alice’s strategy are considered possible
by Bob. Full uniformity is therefore the right notion to capture correctly Bob’s knowledge.

120 Synthesizing Uniform Strategies

Here again, to model different memory and observational abilities of Bob, one can use the appropriate
binary relation, provided it is rational. Also, notice thatthough we chose to illustrate our framework with
opacity aspects, any winning condition that is expressibleby a formula of the epistemic linear temporal
logic with one knowledge operator would fit in our setting.

5 Synthesizing fully-uniform strategies

In this section, we investigate the complexity of synthesizing a fully-uniform strategy. We first consider
the associated decision problem, called here thefully-uniform strategy problem: given a uniform property
ϕ ∈ IRLTL, a finite arenaG = (V,E,v0, ℓ), and a finite state transducerT over alphabetV representing a
rational binary relation between plays (see [6]), does there exist a([T],ϕ)-fully-uniform strategy inG ,
where[T] is the binary relation denoted byT.

Definition 3 For a formulaϕ ∈ IRLTL, the IR-depthof ϕ , written dIR(ϕ), is the maximum number of
nested IR modalities inϕ . For each k∈ N, we let IRLTLk := {ϕ ∈ IRLTL | dIR(ϕ) = k}.

Theorem 3 The fully-uniform strategy problem for formulas ranging over
⋃

k≤n IRLTLk is n-EXPTIME-
complete for n> 2, and2EXPTIME-complete for n≤ 2.

The proof for the upper bounds in Theorem 3 can be found in [22], in which we devise a decision
procedure based on a powerset construction which simulatesthe execution of the transducer along plays
in the arena, enabling the computation of information sets.Dealing with information sets enables us
to performIR-modalities elimination, yielding a reduction of the initial problem to solving someLTL
game. The procedure is however non-elementary since it requires one powerset construction per nesting
of IR-modalities. The proof for the matching lower bounds is a direct reduction from the word problem
for exp[n]-space bounded alternating Turing Machines, which is(n+1)-EXPTIME complete. Due to lack
of space, it is omitted here.

Corollary 4 The fully-uniform strategy problem is non-elementary complete.

Regarding the synthesis problem, the procedure of [25] for solving the terminalLTL game in the
decision procedure of Theorem 3 is an effective construction of a winning strategy when it exists. This
strategy provides a fully-uniform strategy of the initial game, by means of a transducer mapping plays of
the initial game to plays in the terminal game. This transducer itself is straightforwardly built from the
arena of the last game itself.

6 Discussion

We are currently working on sufficient conditions on the binary relation between plays to render the
fully-uniform strategy synthesis problem elementary. It appears that being an equivalence relation is not
enough, but if moreover the relation verifies a weak form ofno learningproperty (see [14]), the problem
seems to be elementary. Concerning the strictly-uniform strategy problem, we conjecture undecidability
in general, but we are investigating interesting subclasses of rational relations that make the problem
decidable.

It would then be interesting to extend the language to the case ofn modalitiesIRi with n relations;i.
Also, the difference between the fully-uniform semantics and the strictly-uniform one could be at the
level of modalities instead of the decision problems level.In Section 4.1 we have seen that uniformity

B. Maubert, S. Pinchinat & L. Bozzelli 121

properties can representuniformity constraintson the set of elegible strategies, and in Section 4.2 we
have seen how they can representepistemic winning conditions. However, while some properties require
strict uniformity, others require full uniformity. Allowing to use both kinds of modalities in a formula
would enable, for example, to express that a strategy must both be winning for some condition on the
opponent’s knowledge (with a fully-uniform modality, see Section 4.2), and to be observation based for
the player considered (with a strictly-uniform modality).A formula of the following kind could be used
for a variant of games with opacity condition where Alice would also have imperfect information (note
that the arenas should be modified, and we assume thatp2 would mark positions where Alice has to
choose an action):

ϕ := G(p2 →
∨

a∈Act

IRstrictly
Alice #pa)

︸ ︷︷ ︸
Observation-based constraint

∧ G¬IRf ully
Bob pS

︸ ︷︷ ︸
Winning condition

In a next step, we would like to consider how our framework adapts if we take as base language the
one of Alternating-time Temporal Logic [2] instead of LTL, so as to obtain an Alternating-time Temporal
Epistemic Logic-like language. It would enable us to express the existence of uniform strategies directly
in the logic, and not only at the level of decision problems asit is the case for now. This step will
require to pass from the two-player turn-based arenas considered so far to multiplayer concurrent game
structures, that are ATL models, but the definitions should adapt without difficulties. However we should
be cautious in generalizing these notions as undecidability will easily be attained.

References

[1] R. Alur, P. Černỳ & S. Chaudhuri (2007):Model checking on trees with path equivalences. Tools and Al-
gorithms for the Construction and Analysis of Systems, pp. 664–678, doi:10.1007/978-3-540-71209-1_
51.

[2] R. Alur, T.A. Henzinger & O. Kupferman (2002):Alternating-time temporal logic. Journal of the ACM
(JACM) 49(5), pp. 672–713, doi:10.1145/585265.585270.

[3] K.R. Apt & E. Grädel (2011):Lectures in Game Theory for Computer Scientists. Cambridge University
Press, doi:10.1017/CBO9780511973468.

[4] A. Arnold, A. Vincent & I. Walukiewicz (2003):Games for synthesis of controllers with partial observation.
Theoretical Computer Science1(303), pp. 7–34, doi:10.1016/S0304-3975(02)00442-5. Available at
http://www.labri.fr/Perso/~igw/Papers/igw-synthesis.ps.

[5] J. Benthem (2005):The Epistemic Logic of IF Games. The Philosophy of Jaakko Hintikka30.

[6] J. Berstel (1979):Transductions and context-free languages. 4, Teubner Stuttgart.

[7] Dietmar Berwanger & Laurent Doyen (2008):On the Power of Imperfect Information. In Ramesh Hariha-
ran, Madhavan Mukund & V. Vinay, editors:FSTTCS, LIPIcs 2, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, pp. 73–82. Available athttp://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1742.

[8] K. Chatterjee, L. Doyen, T. Henzinger & J.F. Raskin (2006): Algorithms for omega-regular games with
imperfect information. In: Computer Science Logic, Springer, pp. 287–302, doi:10.1007/11874683_19.

[9] C. Dima, C. Enea & D. Guelev (2010):Model-Checking an Alternating-time Temporal Logic with Knowl-
edge, Imperfect Information, Perfect Recall and Communicating Coalitions. Electronic Proceedings in The-
oretical Computer Science25, doi:10.4204.

[10] E. Allen Emerson & Charanjit S. Jutla (1991):Tree Automata, Mu-Calculus and Determinacy (Ex-
tended Abstract). In: FOCS, IEEE Computer Society, pp. 368–377. Available athttp://doi.

ieeecomputersociety.org/10.1109/SFCS.1991.185392.

122 Synthesizing Uniform Strategies

[11] R. Fagin, J.Y. Halpern & M.Y. Vardi (1991):A model-theoretic analysis of knowledge. Journal of the ACM
(JACM) 38(2), pp. 382–428, doi:10.1145/103516.128680.

[12] Dov M. Gabbay, Amir Pnueli, Saharon Shelah & Jonathan Stavi (1980):On the Temporal Basis of Fairness.
In Paul W. Abrahams, Richard J. Lipton & Stephen R. Bourne, editors: POPL, ACM Press, pp. 163–173.
Available athttp://doi.acm.org/10.1145/567446.567462.

[13] E. Grädel, W. Thomas & T. Wilke, editors (2002):Automata, Logics, and Infinite Games: A Guide to
Current Research [outcome of a Dagstuhl seminar, February 2001]. Lecture Notes in Computer Science
2500, Springer.

[14] Joseph Y. Halpern, Ron van der Meyden & Moshe Y. Vardi (2004): Complete Axiomatizations for Reasoning
about Knowledge and Time. SIAM J. Comput.33(3), pp. 674–703. Available athttp://dx.doi.org/10.
1137/S0097539797320906.

[15] J.Y. Halpern & M.Y. Vardi (1989):The complexity of reasoning about knowledge and time. 1. Lower bounds.
Journal of Computer and System Sciences38(1), pp. 195–237, doi:10.1145/12130.12161.

[16] J. Hintikka (1962):Knowledge and belief. 13, Cornell University Press Ithaca.

[17] W. van der Hoek & M. Wooldridge (2003):Cooperation, knowledge, and time: Alternating-time temporal
epistemic logic and its applications. Studia Logica75(1), pp. 125–157, doi:10.1023/A:1026185103185.

[18] W. Jamroga & N. Bulling (2011):Comparing variants of strategic ability. In: Proceedings of the Twenty-
Second international joint conference on Artificial Intelligence-Volume Volume One, AAAI Press, pp. 252–
257, doi:10.1023/A:1026171312755.

[19] Wojciech Jamroga & Wiebe van der Hoek (2004):Agents that Know How to Play. Fundamenta Informaticae
63(2-3), pp. 185–219. Available athttp://iospress.metapress.com/content/xh738axb47d8rchf/.

[20] Richard E. Ladner & John H. Reif (1986):The Logic of Distributed Protocols. In Joseph Y. Halpern, editor:
TARK, Morgan Kaufmann, pp. 207–222.

[21] D. Lehmann (1984):Knowledge, common knowledge and related puzzles (ExtendedSummary). In: Proceed-
ings of the third annual ACM symposium on Principles of distributed computing, ACM, pp. 62–67, doi:10.
1145/800222.806736.

[22] Bastien Maubert & Sophie Pinchinat (2012):Uniform Strategies. Rapport de recherche RR-8144, INRIA.
Available athttp://hal.inria.fr/hal-00760370.

[23] Bastien Maubert, Sophie Pinchinat & Laura Bozzelli (2011): Opacity Issues in Games with Imperfect Infor-
mation. In Giovanna D’Agostino & Salvatore La Torre, editors:GandALF, EPTCS54, pp. 87–101, doi:10.
4204/EPTCS.54.7.

[24] R. Parikh & R. Ramanujam (1985):Distributed processes and the logic of knowledge. Logics of Programs,
pp. 256–268, doi:10.1007/3-540-15648-8_21.

[25] A. Pnueli & R. Rosner (1989):On the Synthesis of an Asynchronous Reactive Module. In: Proc. 16th Int.
Coll. on Automata, Languages and Programming, ICALP’89, Stresa, Italy, LNCS 372, Springer-Verlag, pp.
652–671, doi:10.1007/BFb0035790.

[26] J.H. Reif (1984):The complexity of two-player games of incomplete information. Journal of computer and
system sciences29(2), pp. 274–301, doi:10.1016/0022-0000(84)90034-5.

[27] JM Sato (1977):A study of Kripke style methods for some modal logic by Gentzen’s sequential method.
Technical Report, Technical report, Publication ResearchInstitute for Mathematical Science.

[28] J. Väänänen (2007):Dependence Logic.

[29] J. Van Benthem (2001):Games in Dynamic-Epistemic Logic. Bulletin of Economic Research53(4), pp.
219–248, doi:10.1111/1467-8586.00133.

