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Preface

This volume contains the proceedings of the First Inteomati Workshop on Strategic Reasoning
2013 (SR 2013), held in Rome (ltaly), March 16-17, 2013.

The SR workshop aims to bring together researchers, pgssithl different backgrounds, working
on various aspects of strategic reasoning in computersejdoth from a theoretical and a practical
point of view.

Strategic reasoning is one of the most active research aneallti-agent system domain. The lit-
erature in this field is extensive and provides a plethoragick for modeling strategic reasoning.
Theoretical results are now being used in many exciting diasnancluding software tools for in-
formation system security, robot teams with sophisticaigabtive strategies, and automatic players
capable of beating expert human adversary, just to cite af#these examples share the challenge
of developing novel theories and tools for agent-basedreag that takes into account the behavior
of adversaries.

This year SR has hosted four invited talks:
e Breaking the O(n*m) Barrier for Biichi Games and Probatidigerification
Krishnendu Chatterjee (IST Austria)

e Model Checking Systems against Epistemic Specifications
Alessio R. Lomuscio (Imperial College London)

e Looking at Mean-Payoff and Total-Payoff through Windows
Jean-Francois Raskin (Université Libre de Bruxelles)

e Bad Equilibria (and what to do about them)
Michael Wooldridge (University of Oxford)

The program committee also selected 13 papers among thenf&ations submitted. Contributions
were selected according to quality and relevance to thesayfithe workshop.

We would like to acknowledge the people and institutionsicWitontributed to the success of this
edition of SR. We thank the organizers of the European Joimfé&ences on Theory and Practice
of Software (ETAPS 2013) for giving us the opportunity to h88 2013. Many thanks go to all
the Program Committee members and the additional reviefgetheir excellent work, the fruitful
discussions and the active participation during the rewigwrocess. We also thank Giuseppe Perelli
and Loredana Sorrentino for their great work as memberseoOttganizing Committee. We would
like to acknowledge the EasyChair organization for suppgrall tasks related to the selection of
contributions, and both EPTCS and arXiv for hosting the peatings. We gratefully acknowledge
the financial supportto SR 2013 by EXCAPE - an NSF-funded Hitjp@s Project in Computer Aug-
mented Program Engineering. Finally, we acknowledge tivpage from the Department of Elec-
trical Engineering and Information Technology of the Umsita degli Studi di Napoli Federico .

Rome, March 2013
Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.): ©
1st Workshop on Strategic Reasoning 2013 (SR’13) This work is licensed under the
EPTCS 112, 2013, pp. i-ii, d0i:10.4204/EPTCS.112.0 Creative Commons Attribution License.
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Breaking the O(n-m) Barrier for B tichi Games and

Probabilistic Verification
Invited Talk

Krishnendu Chatterjee
IST Austria

Turn-based Biichi games and maximal end-component dectigpaare two classic graph theoretic
problems that are core algorithmic problems in synthesikamification of probabilistic systems.
Moreover, many other problems on graph games reduce to thedhas an example we will first
describe how analysis of reachability objectives in corentrgames reduces to Buchi games. We
will present recent results that break the O(n*m) barrierBtchi games, and show how the same
techniques break the barrier for maximal end-componerdrdeosition.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.): © K. Chatterjee
1st Workshop on Strategic Reasoning 2013 (SR’13) This work is licensed under the
EPTCS 112, 2013, pp. 1-1, doi:10.4204/EPTCS.112.1 Creative Commons Attribution License.






Model Checking Systems against Epistemic Specifications
Invited Talk

Alessio R. Lomuscio
Imperial College London

Twenty years after the publication of the influential agi¢Model checking vs theorem proving:
a manifesto” by Halpern and Vardi, the area of model checkiyglems against agent-based spec-
ifications is flourishing. In this talk | will present some dfet approaches | have developed with
collaborators. | will begin by discussing BDD-based modedaking for epistemic logic combined
with ATL operators and then move to abstraction techniqonekiding symmetry reduction. | will
then highlight how, in our experience, bounded model chegkan also successfully be used in this
context, particularly in combination with BDDs, and how #yesis problems can be formulated and
solved in an epistemic setting. The talk will include exaesih the context of security protocols and
a brief demo of MCMAS, an open-source model checker impldimgisome of these techniques.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.): © A.R. Lomuscio
1st Workshop on Strategic Reasoning 2013 (SR’13) This work is licensed under the
EPTCS 112, 2013, pp. 3-3, doi:10.4204/EPTCS.112.2 Creative Commons Attribution License.






L ooking at M ean-Payoff and Total-Payoff through Windows
Invited Talk

Jean-Francois Raskin
Université Libre de Bruxelles

We consider two-player games played on weighted directagigr with mean-payoff and total-
payoff objectives, which are two classical quantitativgeatives. While for single dimensional
objectives all results for mean-payoff and total-payoficide, we show that in contrast to multi-
dimensional mean-payoff games that are known to be coNRlete; multi-dimensional total-payoff
games are undecidable. We introduce conservative appativins of these objectives, where the
payoff is considered over a local finite window sliding alanglay, instead of the whole play. For
single dimension, we show that (i) if the window size is palgmial, then the problem can be solved
in polynomial time, and (i) the existence of a bounded windman be decided in NP and in coNP,
and is at least as hard as solving mean-payoff games. Foipteulimensions, we show that (i)
the problem with fixed window size is ExpTime-complete, aiidtiiere is no primitive-recursive
algorithm to decide the existence of a bounded window.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.): © J.-F. Raskin
1st Workshop on Strategic Reasoning 2013 (SR’13) This work is licensed under the
EPTCS 112, 2013, pp. 5-5, doi:10.4204/EPTCS.112.3 Creative Commons Attribution License.






Bad Equilibria (and what to do about them)
Invited Talk

Michael Wooldridge

University of Oxford

In economics, an equilibrium is a steady-state situatiomickv obtains because no participant has
any rational incentive to deviate from it. Equilibrium camts are arguably the most important and
widely used analytical weapons in the game theory arsenhé cbncept of Nash equilibrium in
particular has found a huge range of applications, in areadiveerse and seemingly unrelated as
biology and moral philosophy. However, there remain fundatal problems associated with Nash
equilibria and their application. First, there may be npétiNash equilibria, in which case, how
should we choose between them? Second, some equilibria enagdesirable, in which case, how
can we avoid them? In this presentation, | will introduce kvtrat we have done addressing these
problems from a computational/Al perspective. Assumingprior knowledge of game theory or
economic solution concepts, | will discuss various ways hiclhr we can try to engineer a game
so that desirable equilibria result, or else engineer odesinable equilibria. In particular, | will
consider thee possible devices for the management of bgailtaxation, communication, and law-
making. While all of these devices are regularly used in hustieties, in this work, we consider
these as computational problems.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.): © M. Wooldridge
1st Workshop on Strategic Reasoning 2013 (SR’13) This work is licensed under the
EPTCS 112, 2013, pp. 7-7, doi:10.4204/EPTCS.112.4 Creative Commons Attribution License.






Functional Dependence in Strategic Games
(extended abstract)

Kristine Harjes and Pavel Naumov

Department of Mathematics and Computer Science
McDaniel College, Westminster, Maryland, USA
{keh013,pnaumov}@mcdaniel.edu

The paper studies properties of functional dependencies between strategies of players in Nash equi-
libria of multi-player strategic games. The main focus is on the properties of functional dependencies
in the context of a fixed dependency graph for pay-off functions. A logical system describing prop-
erties of functional dependence for any given graph is proposed and is proven to be complete.

1 Introduction

Functional Dependence. In this paper we study dependency between players’ strategies in Nash equi-
libria. For example, the coordination game described by Table 1 has two Nash equilibria: (a;,b;) and
(az,b;). Knowing the strategy of player a in a Nash equilibrium of this game, one can predict the strategy
of player b. We say that player a functionally determines player b and denote this by a > b.

Note that in the case of the coordination game, we also have b > a.
However, for the game described by Table 2 statement a > b is true, but
br>a is false.

The main focus of this paper is functional dependence in multi-
player games. For example, consider a “parity” game with three play-
ers a, b, c. Each of the players picks 0 or 1, and all players are rewarded
if the sum of all three numbers is even. This game has four different
Nash equilibria: (0,0,0), (0,1,1), (1,0,1), and (1,1,0). It is easy to see that knowledge of any two
players’ strategies in a Nash equilibrium reveals the third. Thus, using our notation, for example a,b > c.
At the same time, —(al>c).

Table 1: Coordination Game

As another example, consider a game between three players in ‘ by ‘ b, ‘
which each player picks O or 1 and all players are rewarded if they a; | 1,1 10,0
have chosen the same strategy. This game has only two Nash equilib- a | 00| 1,1
ria: (0,0,0) and (1,1,1). Thus, knowledge of the strategy of player a a; | 1,1 0,0

in a Nash equilibrium reveals the strategies of the two other players.
We write this as at> b, c.

Functional dependence as a relation has been studied previously,
especially in the context of database theory. Armstrong [1] presented the following sound and complete
axiomatization of this relation:

1. Reflexivity: Ar>B,if BCA,

Table 2: Strategic Game

2. Augmentation: A>B — A,Cr>B,C,

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.): (© Kristine Harjes and Pavel Naumov
1st Workshop on Strategic Reasoning 2013 (SR’13) This work is licensed under the
EPTCS 112, 2013, pp. 9-15, doi:10.4204/EPTCS.112.5 Creative Commons Attribution License.



10 Functional Dependence in Strategic Games

3. Transitivity: A>>B — (B>C — A C),

where here and everywhere below A, B denotes the union of sets A and B. The above axioms are known
in database literature as Armstrong’s axioms [5]. Beeri, Fagin, and Howard [2] suggested a variation of
Armstrong’s axioms that describe properties of multi-valued dependence.

Dependency Graphs. As a side result, we will show that the logical system formed by the Armstrong
axioms is sound and complete with respect to the strategic game semantics. Our main result, however, is
a sound and complete axiomatic system for the relation > in games with a given dependency graph.

Dependency graphs [7, 8, 4, 3] put restrictions on the pay-off functions that can be used in the game.
For example, dependency graph I'| depicted in Figure 1, specifies that the pay-off function of player a
only can depend on the strategy of player b in addition to the strategy of player a himself. The pay-off
function for player b can only depend on the strategies of players a and c in addition to the strategy of
player b himself, etc.

~ ~ An example of a game over graph I'; is a game between play-

@ N\ &J @ ers a, b, ¢, and d in which these players choose real numbers as

their strategies. The pay-off function of players a and d is the

constant 0. Player b is rewarded if his value is equal to the mean

of the values of players a and c. Player c is rewarded if his value is equal to the mean of the values of

players b and d. Thus, Nash equilibria of this game are all quadruples (a,b,c,d) such that 2b = a+c
and 2¢ = b+d. Hence, in this game a,b > c,d and a,c > b,d, but =(a>b).

Note that although the statement a, b>> ¢, d is true for the game described above, it is not true for many
other games with the same dependency graph I'j. In this paper we study properties of functional depen-
dence that are common to all games with the same dependency graph. An example of such statement for
the graph I'(, as we will show in Proposition 1, is a>d — b,c>d.

Informally, this property is true for any game over graph I’
because any dependencies between players a and d must be es-
tablished through players b and c. This intuitive approach, how-
ever, does not always lead to the right conclusion. For example, a (v)
in graph I'; depicted in Figure 2, players b and c also separate
players a and d. Thus, according to the same intuition, the state-
ment a>d — b,c>d must also be true for any game over graph
I';. This, however, is not true. Consider, for example, a game in
which all four players have three strategies: rock, paper, and scissors. The pay-off function of players a
and d is the constant 0. If a and d pick the same strategy, then neither b nor c is paid. If players a and d
pick different strategies, then players b and c are paid according to the rules of the standard rock-paper-
scissors game. In this game Nash equilibrium is only possible if a and d pick the same strategy. Hence,
a>d. Atthe same time, in any such equilibria b and ¢ can have any possible combination of values.
Thus, =(b,c>d). Therefore, the statement a > d — b, c > d is not true for this game.

As our final example, consider the graph I'5 depicted in Fig-

ure 3. We will show that at>c — b > c is not true for at least one

game over graph I'3. Indeed, consider the game in which players

a, b, and c use real numbers as possible strategies. Players a and ¢

have a constant pay-off of 0. The pay-off of the player b is equal to O if players a and ¢ choose the same

real number. Otherwise, it is equal to the number chosen by the player b himself. Note that in any Nash
equilibrium of this game, the strategies of players a and ¢ are equal. Therefore, a> ¢, but =(b > ¢).

The main result of this paper is a sound and complete axiomatization of all properties of functional

Figure 1: Dependency Graph I'

&

Figure 2: Dependency Graph I,

Figure 3: Dependency Graph I'3
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dependence for any given dependency graph. This result is closely related to work by More and Naumov
on functional dependence of secrets over hypergraphs [9]. However, the logical system presented in this
paper is significantly different from theirs. A similar relation of “rational” functional dependence without
any connection to dependency graphs has been axiomatized by Naumov and Nicholls [10].

The counterexample that we have constructed for the game in Figure 3 significantly relies on the fact
that player b has infinitely many strategies. However, in this paper we show completeness with respect
to the semantics of finite games, making the result stronger.

2 Syntax and Semantics

The graphs that we consider in this paper contain no loops, multiple edges, or directed edges.

Definition 1 For any set of vertices U of a graph (V,E), border 2(U) is the set
{veU|(v,w) €E for somewcV\U}.

A cut (U,W) of a graph (V,E) is a partition U LUW of the set V. For any vertex v in a graph, by Adj(v)
we mean the set of all vertices adjacent to v. By Adj™(v) we mean the set Adj(v) U{v}.

Definition 2 For any graph T = (V,E), by ®(I') we mean the minimal set of formulas such that (i)
1L ed), (ii)A>B € (') foreachA CV and B CV, (iii) ¢ — w € ®(T) for each ¢,y € ®(T).

Definition 3 By game over graph I = (V,E) we mean any strategic game G = (V,{S, }rev, {uy }vev)
such that (i) The finite set of players in the game is the set of vertices V, (ii) The finite set of strategies
Sy of any player v is an arbitrary set, (iii) The pay-off function u, of any player v only depends on the
strategies of the players in Adj™ (v).

By NE(G) we denote the set of all Nash equilibria in the game G. The next definition is the core definition
of this paper. The second item in the list below gives a precise meaning of the functional dependence
predicate A > B.

Definition 4 For any game G over graph T and any ¢ € ®(I"), we define binary relation G E ¢ as follows
(i) G¥ L, (ii)) GE A> B if s =4 t implies s =p t for each s,t € NE(G), (iii) GE y; — v, if GE y; or
G F y,, where here and everywhere below (s,)ycy =x (ty)yev means that sy = ty for each x € X.

3 Axioms

The following is the set of axioms of our logical system. It consists of the original Armstrong axioms
and an additional Contiguity axiom that captures properties of functional dependence specific to a given
graph I

1. Reflexivity: Ar> B, where BC A

2. Augmentation: A>>B — A,C>B,C

3. Transitivity: A>>B — (B>C — A>C)
4

. Contiguity: A,B>C — B(U),#A(W),Br>C, where (U,W) is a cut of the graph such that A C U
andCCW.
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Note that the Contiguity axiom, unlike the Gateway axiom [9], effectively requires “double layer” divider
AB(U), (W) between sets A and C. This is because in our setting values are assigned to the vertices and
not to the edges of the graph.

We write Fr ¢ if ¢ € ®(T) is provable from the combination of the axioms above and propositional
tautologies in the language ®(I") using the Modus Ponens inference rule. We write X Fr ¢ if ¢ is
provable using the additional set of axioms X. We often omit the parameter I when its value is clear
from the context.

Lemmal FAx>C — A,B>C.

Proof. Assume A > C. By the Reflexivity axiom, A, B> A. Thus, by the Transitivity axiom, A,B>C. K

4 Examples

In this section we give examples of proofs in our formal system. The soundness and the completeness of
this system will be shown in the appendix.

Proposition 1 -, a>d — b,c>d, where Iy is the graph depicted in Figure 1.

Proof. Consider cut (U,W) of the graph I'; such that U = {a,b} and W = {¢,d}. Thus, B(U) = {b}
and #(W) = {c}. Therefore, by the Contiguity axiom, at>d — b,c>d. X

Proposition 2 -, a,c>d — (d,br>a — b,ct>a,d), where Iy is the graph depicted in Figure 1.

Proof. Assume that a,ct>d and d,bt>a. Consider cut (U,W) of the graph I'; such that U = {a,b} and
W = {c,d}. Thus, Z(U) = {b} and B(W) = {c}. Therefore, by the Contiguity axiom with A = {a},
B={c},and C ={d}, a,c>d — b,ct>d. Thus,

b,c>d. (1

by the first assumption. Similarly, using the second assumption, b,c > a. Hence, by the Augmentation
axiom,
b,cr>a,b,c. 2)

Thus, from statement (1) by the Augmentation axiom, a,b,c > a,d. Finally, using statement (2) and the
Transitivity axiom, b,c>a,d. X

Proposition 3 Fr, a,c>e — b,c,d > e, where I'y is the graph depicted in Figure 4.

Proof. Consider cut (U,W) of the graph Iy
such that U = {a,b,c} and W = {d,e}. Thus,
a (v) () (a) O BU) = {b,c} and B(W) = {d}.  There-
U\// fore, a,c>e — b,c,d > e by the Contigu-
ity axiom with A = {a}, B = {c}, and C =

Figure 4: Dependency Graph I's {e}. X
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Proposition 4 -, a>b — (b>c — (c>a—d,e, f>a,b,c)), where I's is depicted in Figure 5.

Proof. Assume at>b, br>c, and c>a. Consider cut (U, W) of the graph I's such that U = {c, f} and
W ={a,b,d,e}. Thus, B(U) = {f} and Z(W) = {d,e}. Therefore, by the Contiguity axiom with
A={c},B=0,and C ={a},c>a—d,e, f>a. Hence, d,e, f > a by the third assumption. Similarly,
one can show d,e, f > b, and d,e, f > c. By applying the Augmentation axiom to the last three state-
ments, d,e, f>a,d,e, f,and a,d,e, fI>a,b,d,e, f, and a,b,d e, f > a,b,c. Therefore, d,e, f > a,b,c by
the Transitivity axiom applied twice. X

Proposition 2 and Proposition 4 are special cases of a more
general principle. We will say that a subset of vertices is sparse if
the shortest path between any two vertices in this subset contains
at least three edges. The general principle states that if W is a
sparse subset of vertices in the graph (V,E) and each vertex w €
W is functionally determined by the set V \ {w}, then the subset
V \ W functionally determines the subset W:

N\ (V\{wh)>w— (VAW)>W.

wew

Figure 5: Dependency Graph I's
For example, the set {a,d} in the graph I'; depicted in Figure 1
is sparse. Due to the general principle, a,b,c>d — (d,c,bt>a — b,ct>a,d). Thus, by Lemma 1,
a,c>d — (d,b>a — b,ct>a,d), which is the statement of Proposition 2. In the case of Proposition 4,
the sparse set is {a,b,c}. The proof of the general principle is similar to the proof of Proposition 4.

5 Soundness

In this section, we prove soundness of our logical system by proving soundness of each of our four
axioms. The proof of completeness can be found in [6].

Lemma 2 (reflexivity) G E A > B for each game G over a graphT" = (V,E) and eachBC A CV.

Proof. For any s,t € NE(G), if s =4 t, then s =p t because A C B. X

Lemma 3 (augmentation) If G A B, then G A,Cr>B,C for each game G over a graph T = (VE)
and each A,B,C C V.

Proof. Suppose that G F A > B and consider any s,t € NE(G) such that s =4 ¢ t. We will show that
s =g t. Indeed, s =4 ¢ t implies that s =4 t and s =¢ t. Thus, s =p t by the assumption G = A > B.
Therefore, s =p ¢ t. X

Lemma 4 (transitivity) If GF A> B and GE B> C, then GFE A>C for each game G over a graph
I'=(V,E) and each A,B,C C V.

Proof. Suppose that GF A>B and G E Br>C. Consider any s,t € NE(G) such that s =4 t. We will
show that s =¢ t. Indeed, s =p t due to the first assumption. Hence, by the second assumption, s =¢ t. X
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Lemma 5 (contiguity) If GE A,Br>C, then G = A(S),B(T),Br>C, for each game G = (V,E) over a
graph T, each cut (U,W) of T, and each A CU, BCV,and CCW.

Proof. Suppose that GE A,Br>C. Consider any s = (s,),cy € NE(G) and t = (t,),ey € NE(G) such
that s =), z(w),s t. We will prove that s =¢ t. Indeed, consider strategy profile e = {ey)vey such that

o — s, ifveU,
Vol ifvew.

We will first prove that e € NE(G). Assuming the opposite, let v € V be a player in the game G that
can increase his pay-off by changing strategy in profile e. Without loss of generality, let v € U. Then,
€ =44j(vjuiv} S- Thus, player v can also increase his pay-off by changing strategy in profile s, which is a
contradiction with the choice of s € NE(G).

Note that e =y p s and e =y p t. Thus, e =5 p s and e =c s. Hence, e =c s by the assumption
GEA,Br>C. Therefore, s =c e =¢ t. X

6 Conclusion

In this paper, we have described a sound and complete logical system for functional dependence in
strategic games over a fixed dependency graph. The dependency graph puts restrictions on the type of
pay-off functions that can be used in the game. If no such restrictions are imposed, then the logical
system for functional dependence in strategic games is just the set of original Armstrong axioms. This
statement follows from our results since the absence of restrictions corresponds to the case of a complete
(in the graph theory sense) dependency graph. In the case of a complete graph, the Contiguity axiom
follows from the Armstrong axioms because for any cut (U, W), the set Z(U) U .Z(W) is the set of all
vertices in the graph.
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In collective decision making, where a voting rule is used to take a collective decision
among a group of agents, manipulation by one or more agents is usually considered nega-
tive behavior to be avoided, or at least to be made computationally difficult for the agents
to perform. However, there are scenarios in which a restricted form of manipulation can
instead be beneficial. In this paper we consider the iterative version of several voting
rules, where at each step one agent is allowed to manipulate by modifying his ballot
according to a set of restricted manipulation moves which are computationally easy and
require little information to be performed. We prove convergence of iterative voting rules
when restricted manipulation is allowed, and we present experiments showing that most
iterative voting rules have a higher Condorcet efficiency than their non-iterative version.

1 Introduction

In multi-agent systems, often agents need to take a collective decision. A voting rule can be used to
decide which decision to take, mapping the agents’ preferences over the possible candidate decisions into
a winning decision for the collection of agents. In this kind of scenarios, it seems desirable that agents
do not have any incentive to manipulate, that is, to misreport their preferences in order to influence the
result of the voting rule in their favor.

Manipulation is indeed usually seen as bad behavior from agents, to be avoided or at least to be made
computationally difficult to accomplish. While we know that every voting rule is manipulable when no
domain restriction is imposed on the agents’ preferences (such as single-peakedness), we can try to make
sure that a voting rule is computationally difficult to manipulate for single agents or coalitions of agents.

In this paper we consider a different setting, in which instead manipulation is allowed in a fair way.
As in the usual case, we start with agents expressing their preferences over a set of candidates and the
voting rule selecting the current winner. However, this is just a temporary winner, since at this point a
single agent may decide to manipulate, that is, to change her preference if by doing so the result changes
in her favor. The process repeats with a new agent manipulating until we eventually reach a convergence
state, i.e., a profile where no single agent can get a better result by manipulating. We call such a process
iterative voting. In this scenario, manipulation can be seen as a way to achieve consensus, to give every
agent a chance to vote strategically (a sort of fairness), and to account for inter-agent influence over time.

A practical example of this process is Doodle,! a very popular on-line system to select a time slot for
a meeting by considering the preferences of the participants. In Doodle, each participant can approve as

Thttp://doodle.com/
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many time slots as she wants, and the winning time slot is the one with the largest number of approvals.
At any point, each participant can modify her vote in order to get a better result, and this can go on for
several steps. Depending on the voting rule, on the tie-breaking rule (to be used when there are several
tied winners), and on the possible manipulation moves (that is, how agents are allowed to change their
preferences in a single step), we may get convergence or not. We will say that the iterative version of a
voting rule converges if it gets to a stable state no matter the initial profile.

Iterative voting has been the subject of numerous publications in recent years. Previous work has
focused on iterating the plurality rule [6] and on the problem of convergence for several voting rules [5].
Lev and Rosenschein [5] showed that, if we allow agents to manipulate in any way they want (i.e., to
provide their best response to the current profile), then the iterative version of most voting rules do
not converge. Therefore, an interesting problem is to seek restrictions on the manipulation moves to
guarantee convergence of the associated iterative rule. Restricted manipulation moves are good not
only for convergence, but also because they can be easier to accomplish for the manipulating agent. In
fact, contrarily to what we aim for in classical voting scenarios, here we do not want manipulation to
be computationally difficult to achieve. It is actually desirable that the manipulation move be easy to
compute while not requiring too much information to be computed.

An example of a restricted manipulation move is the one for agents called k-pragmatists by Reijngoud
and Endriss [8]: a k-pragmatist just needs to know the top k candidates in the collective candidate order,
and will move the most preferred of those candidates to the top position of her preference. To accomplish
this move, a k-pragmatist needs very little information and it is computationally easy to perform the
move. This move assures convergence with a number of voting rules.

In this paper we introduce two restricted manipulation moves within the scenario of iterative voting
and we analyze some of their theoretical and practical properties. Both manipulation moves we con-
sider are polynomial to compute and require little information to be used. We show that convergence is
guaranteed under both moves, except for STV for which we only have experimental evidence of conver-
gence. Moreover, we show that if a voting rule satisfies some axiomatic properties, such as Condorcet
consistency or unanimity, then its iterative version will also satisfy the same properties as well. For vot-
ing rules that are not Condorcet consistent, we tested experimentally whether their Condorcet efficiency
(that is, the probability to elect the Condorcet winner) improves by adopting the iterative version. Our
experiments show that the Condorcet efficiency improves when restricted manipulation moves are used.

The paper is organized as follows. In Section 2 we introduce the basic definitions of iterative voting
and we define two new restricted manipulation moves. Section 3 contains theoretical results on conver-
gence and preservation of axiomatic properties, and in Section 4 we present our experimental evaluation
of restricted iterative voting. Section 5 contains our conclusions and directions for future research.

2 Background Notions

In this section we recall the basic notions of voting theory that we shall use in this paper, we present the
setting of iterative voting, and we define a number of restrictions on the manipulation moves that agents
can perform.

2.1 Voting Rules

Let 2 be a finite set of m candidates and .# be a finite set of n individuals. We assume individuals have
preferences p; over candidates in 2" in the form of strict linear orders, i.e., transitive, anti-symmetric
and complete binary relations. Individuals express their preferences in form of a ballot b; (e.g., the top
candidate, a set of approved candidates, or the full linear order) and we call the choice of a ballot for each
individual a profile b = (by,...,b,). In this paper, we assume that individuals submit as a ballot for the
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election their full linear order, and we thus use the two notions of ballot and preference interchangeably.

A (non-resolute) voting rule F associates with every profile b = (by,...,b,) a non-empty subset of
winning candidates F(b) € 2% \ 0. There is a wide collection of voting rules that have been defined in
the literature [2] and here we focus on the following ones:

Positional scoring rules (PSR): Let (s1,...,s,) be a scoring vector such that s; > --- > s, and 51 > sp,.
If a voter ranks candidate c at j-th position in her ballot, this gives s; points to the candidate. The
candidates with the highest score win. We focus on four particular PSR: Plurality with scoring
vector (1,0,...,0), veto with vector (1,...,1,0), 2-approval with vector (1,1,0,...,0), 3-approval
with vector (1,1,1,0,...,0), and Borda with vector (m—1,m—2,...,0).

Copeland: The score of candidate c¢ is the number of pairwise comparisons she wins (i.e., contests
between c and another candidate a such that there is a majority of voters preferring ¢ to @) minus
the number of pairwise comparisons she loses. The candidates with the highest score win.

Maximin: The score of a candidate ¢ is the smallest number of voters preferring it in any pairwise
comparison. The candidates with the highest score win.

Single Transferable Vote (STV): At the first round the candidate that is ranked first by the fewest number
of voters gets eliminated (ties are broken following a predetermined order of candidates). Votes
initially given to the eliminated candidate are then transferred to the candidate that comes imme-
diately after in the individual preferences. This process is iterated until one alternative is ranked
first by a majority of voters.

All rules considered thus far are non-resolute, i.e., they associate a set of winning candidates with every
profile of preferences. To eliminate ties in the outcome we assume that the set 2~ of candidates is ordered
by < 2, and in case of ties the alternative ranked highest by < 2- is chosen as the unique outcome.

2.2 Iterative Voting

A classical problem studied in voting theory is that of manipulation: do individuals have incentive to
misreport their preferences, in order to force a candidate they prefer as winner of the election? The
Gibbard-Satterthwaite Theorem [4, 9] showed that under natural conditions all voting rules can be ma-
nipulated. Following this finding, a considerable amount of work has been spent on devising conditions
to avoid manipulation, e.g., in form of restrictive conditions on individual preferences, or in form of
computational barriers that make the calculation of manipulation strategies too hard for agents [1, 3].

In this paper, we take a different stance on manipulation: we consider the fact that individuals are
allowed to change their preferences as a positive aspect of the voting process, that may eventually lead
to a better result after a sufficient number of steps. Thus, we consider a sequence of repeated elections in
which at each step one of the individuals is allowed to manipulate, i.e., to modify her ballot in order to
change the outcome of the election in her favor. The iteration process starts at b® (which we shall refer
to as the truthful profile) and continues to b!,... b*. At each step only one individual 7(k) is allowed to
manipulate, following a turn function 7 (e.g., T follows the order in which individuals are given), while
all other individual ballots remain unchanged.

The setting of iterative voting was first introduced and studied by [6] for the case of the plurality rule,
and expanded by [5]. In their work, the authors describe the iterated election process as a voting game, in
which convergence of the iterative process corresponds to reaching a Nash equilibria of the game. They
show that convergence is rarely guaranteed with most voting rules under consideration: for instance, the
iterative version of PSRs and Maximin do not always converge, even with deterministic tie-breaking (i.e.,
not randomized). On the other hand, plurality always converges with any tie-breaking rule, as well as
veto with linear tie-breaking.
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2.3 Restricted Manipulation Moves

The convergence of the iterated version of a voting rule can be obtained by restricting the set of manip-
ulation strategies available to the agents. We now list a number of restrictions that have been studied in
the literature, and we add two new definitions to this list. Let b* be the current profile at step k, b° be the
initial (truthful) profile, and F be a voting rule. Assume that 7(k) = i.

Best response (no restriction): the manipulator i changes her full ballot by selecting the linear order
which results in the best possible outcome for her truthful preference b? [5].

k-pragmatist: the manipulator i moves to the top of her reported ballot the most preferred candidate
following b? among those that scored in the top & positions [8].

M1: the manipulator i moves to the top of her reported ballot the second-best candidate in b?, unless
the current winner w = F (b*) is already her best or second-best candidate in 5.

M?2: the manipulator i moves to the top of her reported ballot the most preferred candidate in b? which
is above w = F(b¥) in b¥, among those that can become the new winner of the election.

Different restrictions on manipulation moves induce different iterated versions of a voting rule:

Definition 1. Let F be a voting rule and M a restriction on manipulation moves. FM'* associates with
every profile b the outcome of the iteration of F using turn function T and manipulation moves in M if
this converges, and 1 otherwise.

In the sequel we shall omit the superscript 7 from the notation when this will be clear from the context.
Observe that if M is the set of best responses, then F¥ = F*.

Restrictions on the set of manipulation moves can be evaluated following three parameters: (i) the
convergence of the iterated voting rule associated with the restriction, (if) the information to be pro-
vided to voters for computing their strategy?, and (iii) the computational complexity of computing the
manipulation move at every step. An ideal restriction always guarantees convergence, requires as little
information as possible, and is computationally easy to compute.

As we pointed out at the end of the previous section, convergence is not guaranteed in most cases
if the set of manipulation moves is not restricted (i.e., using best responses). Reijngoud and Endriss [8]
show convergence for PSRs using the k-pragmatist restriction, and we shall investigate convergence
results for M1 and M2 in the following section. Let us move to the other two parameters: on the one
hand, M1 requires as little information as possible to be computed, i.e., only the winner of the current
election, and is also very easy to compute. On the other hand, computing the best response requires
an agent to have full knowledge of a profile, and may be computationally very hard to compute [1].
The k-pragmatist restriction has good properties: it is easy to compute, and the information required to
compute the best strategy is just the set of the candidates ranked in the top k positions. M2 also requires
little information for the agents: the scoring vector of candidates in case of scoring rules, the majority
graph for Copeland and Maximin. In the case of STV the full profile is instead required. Moreover, from
the point of view of the manipulator, M2 is computationally easy (i.e., polynomial) to perform.

3 Convergence and Axiomatic Properties

In this section we prove that the iterated version of PSR, Maximin and Copeland converge when using our
two new restrictions on the manipulation moves. We also analyze, for a number of axiomatic properties,
the behavior of the iterated version of a voting rule.

2This parameter is called poll information function by Reijngoud and Endriss [8].
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Theorem 1. FM! converges for every voting rule F.

Proof. The proof of this statement is straightforward from our definitions. The iteration process starts at
the truthful profile by, and each agent is then allowed to switch the top candidate with the one in second
position. Thus, the iteration process stops after at most n steps. 0

Theorem 2. FM? converges if F is a PSR, the Copeland rule or the Maximin rule.

Proof. The winner of an election using a PSR, Copeland or Maximin is defined as the candidate max-
imizing a certain score (or with maximal score and higher rank in the tie-breaking order). Since the
maximal score of a candidate is bounded, it is sufficient to show that the score of the winner increases
at every iteration step (or, in case the score remains constant, that the position of the winner in the
tie-breaking order increases) to show that the iterative process converges.

Let us start with PSR. Recall that the score of a candidate ¢ under PSR is ) ;s; where s; is the score
given by the position of ¢ in ballot b;. Using M2, the manipulator moves to the top a candidate which
lies above the current winner c. Thus, the position — and hence the score — of ¢ remains unchanged, and
the new winner must have a strictly higher score (or a better position in the tie-breaking order) than the
previous one. The case of Copeland and Maximin can be solved in a similar fashion: it is sufficient to
observe that the relative position of the current winner ¢ with all other candidates (and thus also its score)
remains unchanged when ballots are manipulated using M2. Thus, the Copeland score and the Maximin
score of a new winner must by higher than that of ¢ (or the new winner must be placed higher in the
tie-breaking order). O

While currently we do not have a proof of convergence for STV, we observed experimentally that its
iteration always terminates on profiles with a Condorcet winner when a suitable turn function described
in the following section is used.

Voting rules are traditionally studied using axiomatic properties, and we can inquire whether these
properties extend from a voting rule to its iterated version. We refer to the literature for an explanation
of these properties [10]. Let us call £ the iterated version of voting rule F after ¢ iteration steps. We
say that a restricted manipulation move M preserves a given axiom if whenever a voting rule F' satisfies
the axiom then also F does satisfy it for all z.

Theorem 3. M1 and M2 preserve unanimity.

Proof. Assume that the iteration process starts at a unanimous profile b in which candidate c is at top
position of all individual preferences. If F is unanimous, then F (b) = ¢, and no individual has incentives
to manipulate either using M1 or M2. Thus, iteration stops at step 1 and EM!(b) = ¢ and EM?(b) = c,
satisfying the axiom of unanimity. O

Theorem 4. M1 and M2 preserve Condorcet consistency.

Proof. Let ¢ be the Condorcet winner of a profile b. If F is Condorcet-consistent then F(b) = c¢. As
previously observed, when individuals manipulate using either M1 or M2 the relative position of the
current winner with all other candidates does not change, since the manipulation only involves candidates
that lie above the current winner in the individual preferences. Thus ¢ remains the Condorcet winner in
all iteration steps b*. Since FM!(b) = F(b*) and F is Condorcet-consistent, we have that F;'!(b) = ¢
and thus Fle is Condorcet consistent. Similarly for M2. O
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Other properties that transfer from a voting rule to its iterative version are neutrality and anonymity
(supposing the turn function satisfies an appropriate version of neutrality and anonymity). The Pareto-
condition does not transfer to the iterated version, as can be shown by adapting an example by Reijngoud
and Endriss [8].

4 Experimental Evaluation of Restricted Manipulation Moves

In this section we evaluate our two restricted manipulation moves M1 and M2 under one important
aspect: we measure whether the restricted iterative version of a voting rule has a higher Condorcet
efficiency than the initial voting rule, i.e., whether the probability that a Condorcet winner (if it exists)
gets elected is higher for the iterative rather than non-iterative rule. We show that in most cases the
Condorcet efficiency of a voting rule increases if iterated manipulation is allowed using M1 or M2
(except for Copeland and Maximin which are already Condorcet-consistent rules). We also compare our
findings with the k-pragmatist restriction for k = 2,3.

Our results are obtained using a program implemented in Java ver.1.6.0. The software generates
profiles with uniform distribution (i.e., impartial culture assumption). The impartial culture assumption
has received criticism in recent years [7]. However, it remains the most common assumption used in
social choice theory, and thus represents the obvious starting point for our empirical evaluation. Our test
set contains 10.000 profiles with Condorcet winner. We set the number of candidates to 5 and varied the
number of voters from 20 to 100.

The turn function used in our experiments associates to each voter i a dissatisfaction index d;(k),
which increases of one point for each iteration step in which the individual has an incentive to manipulate
but is not allowed to do so by the turn function. At iteration step k the individual that has the highest
dissatisfaction index is allowed to move (in the first step, and in case of ties, the turn follows the initial
order in which voters are given). We were always able to compute the outcome of the iterative voting
rules after convergence in reasonable time.

4.1 Condorcet efficiency of restricted iterative voting

Figure 1 compares, for several voting rules, the Condorcet efficiency of the respective iterative version
using restricted manipulation moves M1, M2, 2-pragmatist and 3-pragmatist. The number of voters is
set to n = 50.

100

90 —

80

Condorcet Efficiency (%)

Plurality Borda STV 2Approval 3Approval Veto

ONon-Iterative version @M1 CM2 ®2-pragmatists M 3-pragmatists

Figure 1: Iterated Condorcet efficiency.

Except for the case of the Borda rule, the Condorcet efficiency of the iterated version of a voting rule



U. Grandi, A. Loreggia, F. Rossi, K. B. Venable and T. Walsh 23

improves significantly with respect to the non-iterated version, and the growth is significantly higher
when voters manipulate the election using M2 rather than M 1. A plausible reason for this behavior is the
difference in range of candidates that can be helped by the two manipulation moves. While M1 may help
a Condorcet winner being elected only if it was ranked second by some of the individuals, M2 may help
a candidate even if it was ranked lower. Let us also stress that while the increase in Condorcet efficiency
using M1 is minimal, it is still surprising that such a simple move can result in a better performance than
the original version of the voting rule. The 2-pragmatist and 3-pragmatist restriction perform quite well
with the plurality rule, while for all other rules our restriction M2 results in a better performance.

In the case of Plurality a significant increase can be obtained with both M1 and M2. In Figure 2 we
show the trend in Condorcet efficiency when voters vary from n = 20 to n = 100. It can be observed that
the increase is higher for smaller numbers of voters and stabilizes at around n = 60. The same behavior
can be observed in Figure 3 for the case of STV.

3
iency (%)

Condorcet Efficiency (%)
8
Condorcet Effici

20 0 60 80
Number of voters

Number of voters OsTV @sTVM1 mSTVM2

OPlurality @ Plurality M1 m Plurality M2

Figure 2: Condorcet efficiency of plurality. Figure 3: Condorcet efficiency for iterated STV.

STV has the highest performance of all voting rules considered thus far. STV has already a high Con-
dorcet efficiency, but this is amplified by the use of manipulation moves, in particular M2. In Figure 3
we show that its Condorcet-efficiency can be augmented to more than 95 percent. As remarked earlier,
we observed convergence in all profiles considered.

The absence of any increase in Condorcet efficiency for veto (as well as 2-approval and 3-approval
using M1) is a consequence of the fact that our restricted moves do not change the candidates’ score with
these particular scoring vectors.

5 Conclusions and Future Work

This paper studies the iteration of classical voting rules allowing individuals to manipulate the outcome
of the election using a restricted set of manipulation moves.

We provided two new definitions of manipulation moves M1 and M2 and showed that they lead to
convergence for all voting rules considered (cf. Theorem 1 and 2). We also showed that most axiomatic
properties, such as unanimity and Condorcet consistency, are preserved in the iteration process. We
evaluated the performance of our restricted manipulation moves with respect to the Condorcet efficiency
of the iterated version of a voting rule as well as the average position of the winner in the initial truthful
profile. Our experiments showed that allowing restricted manipulation in iterative voting yields a positive
increase in Condorcet efficiency, and that, predictably, the best performance is obtained when more
information is given to agents (cf. the case of STV with M2).
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This work gives rise to a number of interesting directions to be explored in future research. First,

different restrictions on manipulation moves may be considered, and their performance should be com-
pared with that of existing definitions. We tested a move similar to M2, which did not restrict the choice
of a candidate to those who become the new winners of the iterated election, obtaining a performance
comparable to that of M2. Restricted manipulation moves may also be evaluated using other parameters,
and could be tested on more realistic distributions of profiles of preferences, for instance by exploiting
data extracted from Internet-based polling services like Doodle.
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We study infinite two-player games where one of the playeusngire about the set of moves avail-
able to the other player. In particular, the set of moves efatiner player is a strict superset of what
she assumes it to be. We explore what happens to sets in séeials of the Borel hierarchy under
such a situation. We show that the sets at every alternagkdéthe hierarchy jump to the next higher
level.

1 Introduction

Infinte two-player games have attracted a lot of attentiahfannd numerous applications in the fields
of topology, descriptive set-theory, computer science examples of such types of games are: Banach-
Mazur games, Gale-Stewart games, Wadge games, Lipschitesgatc. [7, 6, 11, 3], and they each
characterize different concepts in descriptive set theory

These games are typically played between two players, Playnd Player 1, who take turns in
choosing finite sequences of elements (possibly singlefoms a fixed setA (finite or infinite) which
is called the alphabet. This process goes on infinitely amddeefines an infinite sequenggiu,. ..
of finite strings which in itself is an infinite string over tisetA. In addition, the game has a winning
conditionWinwhich is a subset of the set of infinite strings oveA®. Player 0 is said to win the game
if the sequenceipuiUs . . . is in Win. Player 1 wins otherwise.

In addition to their applications in descriptive set-theand topology, such games have also been
used in computer science in the fields of verification andrmgis of reactive systems [4]. The verifica-
tion problem is modeled as a game between two players: themnsydayer and the environment player.
The winning setVin is specified using formulas in some logic, LTL, CTj;calculus etc. The goal of
the system player is to meet the specification along every gold that of the environment player is to
exhibit a play which does not meet it. To verify the systermthmounts to show that the system player
has a winning strategy in the underlying game and to find thédeg)y.

WhenWin is specified using the usual logics, it corresponds to setlsa@riow levels of the Borel
hierarchy. It is known that the complexity of the winningadgy increases with the increase in the level
of the Borel hierarchy to whichVin belongs [10]. For instance, in Gale-Stewart gamesshability,
safety andMuller are winning conditions in th&?, I'Ig’ andzg levels of the Borel hierarchy respectively
and a player has positional winning strategies for readihabind safety but needs memory to win for
the Muller condition. However it was shown in [5, 8] that atimamount of memory suffices. The notion
of Wadge reductions also formalises this increase in caxitplef the sets along the Borel hierarchy.

Such games (esp. Banach-Mazur and Gale-Stewart gamegjnaspplications in linguistics. [2]
shows that conversations have a topological structurdaitoithat of Banach-Mazur games and explores
how the different types of objectives of conversationsegpond to different levels in the Borel hierarchy

*We thank ERC grant 269427 for research support.
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depending on their complexity. [2] also applied of the dlzasresults from the literature of Banach-
Mazur games to the conversational setting. [1] applies -Gédgvart games to the study of politeness.

In this paper, we look at what happens to sets in the Borealiby when the underlying alphabet
is expanded. That is, the alphabet is changed ffoim B such thaB is a strict superset ok. We show
that sets at every alternate level of the Borel hierarchyetgm a jump to the next higher level. More
precisely, a set at level of the hierarchy with alphabet moves to leveh+ 1 when the alphabet is
expanded td@. This process goes on for all countable levels and stabifite.

Our result has consequences for both formal verificationliawgdistic applications some of which
we elucidate in the concluding section.

The rest of the paper is organised as follows. In Section 2om@dlly introduce the necessary
concepts and give the required background for the papen ifh®ection 3 we state and prove the main
results of the paper. Finally we conclude with some intargstonsequences in Section 4.

2 Preliminaries

In this section we present the necessary background regidrehe paper. Although we define most
of the concepts used in the paper, we assume some familgititythe basic notions of topology and
set-theory.

2.1 Open and closed sets

Let A be a non-empty set. We sometimes refeAtas thealphabet. For any subseX of A, as usual,
we denote byX* the set of finite strings oveX and byX®, the set of countably infinite strings ov&r
For any stringu € A* UA® we denote théth element ofu by u(i). The set ofprefixes of u are all strings
v e A* such thau=w for v € A*UA®,

We define a topology 0A®, the standard topology (also known as the Cantor topologyhe set
of infinite strings overA. This topology can be defined in at least three equivalenswaje first way
is to define the discrete topology @nand then assigA® the product topology. The second way is to
explicitly define the open sets of the topology. The open aetgiven by sets of the forid A® where
X is a subset oA*. Thus an open set is a set of finite strings oXefollowed by their all possible
continuations. For a set C A*, we denote the open sEA® by Oa(X) or simply by O(X) when the
underlying alphabeA is clear from the context. WheX is a singleton{u}, we abuse notation to denote
the open settA” by Oa(u). Example 1 illustrates these concepts.

Example 1. Let A= {a,b,c}. ThenabcA’ is an open set and so &A” UbaA®. The complement of
the setabcA is the selX of all strings that do not havabcas their prefix. This is a closed set.

Yet another equivalent way to define the topology is to giveemplicit metric for it. Given two
strings, ur, U, € A%, the distance between theiuy, uy) is defined to be A2"U:%2)  wheren(uy, uy) is
the first index where; andu, differ from each other. Thus the above topology is metrisablenceforth,
when we use the term ‘set’ we shall mean a subsét“of

Note that the sefabcA?) in the above example is also open. That is because it is a ofithie open
setsO(aa),O(ac), O(b) andO(c). Such sets, which are both open and closed are cdbbedn sets. So
what is a set which is open but not closed (and vice versa)?

Proposition 1 ([9]) If A is a finite alphabet, a subset of’As clopen if and only if it is of the form XA
where X is a finite subset of A
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Thus if A is finite then a set of the forlX A“ whereX is an infinite subset oA* is open but not
closed. IfAis infinite, the subsets &% of the form X A®, whereX is a set of words of bounded length
of A* are clopen. However there might exist clopen sets which atrefrthis form.

2.2 The Borel hierarchy

A set of subsets oA% is called ag-algebra if it is closed under countable unions and complements. riGive
a setX, the smallestr-algebra containing is called theo-algebragenerated by X. It is equivalent to
the intersection of all ther-algebras containingX. The sigma algebra generated by the open sets of a
topological space is called tlig»rel o-algebra and its sets are called B@el sets.

The Borel sets can also be defined inductively. This gives@raishierarchy of classeg} andng

for 1 < a < wr. LetZ9 be the set of all open set§l; = 39 is the set of all closed sets. Then for any
a > 1 whereaq is a successor ordinal, defirié, to be the countable union of a[rlg,_1 sets and define
Ng to be the complement &3. For a limit ordinaln, 1 < n < oy, I is defined ag) = Uy, =5 and

I'I?7 = ﬂ. The infinite hierarchy thus generated is called Baeel hierarchy and they together form the
Borel algebra. It is known [9] that if the space is metrisade the underlying alphabet contains at least
two elements, then the hierarchy is indeed infinite, thahiscontainmentsd 2% ., andng c nY
are strict.

2.3 Wadge reductions and complete sets

Let A andB be two alphabets. A functioh : A¥ — B? is said to be continuous if for every open subset
Y C B®, f~(Y) is also open.

A setX C A% s said toWadge reduce to another se¥ C B%, denotedX <y Y, if there exists a
continuous functiorf : A® — B® such thatf ~1(Y) = X.

Let A be an alphabet. A sét C A® is said to bex9 (resp.M9) complete if X € 4 (resp.X € N9)
and for any other alphab&tand for anyz% (resp.M%) setY C B®, Y <w X. Intuitively, given a class of
setsl’, the complete sets of that class represent the sets whidtracturally the most complex in that
class.

For the Borel hierarchy, completeness can be charactdriged following simple way:

Proposition 2 ([9]) Let X C A®. Then X isnY (resp. £%) complete if and only if X N9\ =9 (resp.
o \Ma_y)-

2.4 Infinite games

Let A be an alphabet. An infinite game @nis played between two players, Player O and Player 1,
who take turns in choosing finite sequences of elementsifppssngletons) from a fixed sek (finite
or infinite) which is called the alphabet. This process gaeénéinitely and hence defines an infinite
sequencalguy Uy . .. of finite strings which in itself is an infinite string over tisetA. In addition, the
game has a winning conditidvin which is a subset of the set of infinite strings o#eA®. Player 0 is
said to win the game if the sequenggi U, . .. is in Win. Player 1 wins otherwise.

In a Banach-Mazur game, each player at her turn chooses a fiimit-empty sequence of elements
from A while in a Gale-Stewart game the players are restricted ¢osihg just single elements frofk
An infinite game can also be imagined to be played on a g&ph(V, E) where the set of verticés is
partitioned intdv/y andV; which represent the Player 0 and 1 vertices respectivelg.glme starts at an
initial vertexvp € V and the players take turns in moving a token along the edgixe @fraph depending
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on whose vertex it is currently. This process is continuethfwditum and thus generates an infinite path
p in the graphG. Player 0 wins if and only ip € WinwhereWinis a pre-specified set of infinite paths.

3 Results

In this section we present the main results of this papereiGa/subseB of an alphabeA the topology

of B where the open sets are given®y)B® for every open seéD of A is called the relative topology
of B® with respect toA®. However we are interested in the opposite question. Whatdras when the
alphabet expands? In particular, we show that when the ladpts®t changes fromito B (say) such that
B is a strict superset & then the sets in the alternative levels of the Borel hiesatgidergo a jump in
levels.

Lemma 1 Let A and B be two alphabets such thatB. An open set O in the spac& jumps tozg in
the space B. A closed set C in the spac& Aemains closed in 8.

Proof The proof is by carried out by coding the open €ein the spaceB® and demonstrating a
complete set foB®.

Let O be an open setiA®. ThenOis of the formX A” whereX C A*. Let 2 be an indexing of the
setX.

Each element of X gives the open sé&Da(u) which is a subset cA®. Now, when we move to the
alphabeB, the seOg(u) is the set of strings which haweas a prefix and all possible continuations using
letters ofB. ThusOg(u) is a strict superset dDa(u). Hence, we need to restri€ig(u) in B® such that
we obtain a set which is equal @u(u) in A®. One way to do do so is as follows. Consider all the finite
continuations ofi in letters fromA. Let %, be an indexed set of all these continuations. TOr() is
the set

Oa(u) =()0s(U), U € %, (1)

which is a closed set, being an arbitrary intersection cexosets.
Thus the se© can be represented Bf as

o= UOA(U)7 uec '%B

each of which by (1) is a closed set. Herg@e zg in the spacd3®.

Next we demonstrate # setO in a spaceA® which is complete foE9 in a spaceB® whereA C B.
Let A= {a,b} andB = {a,b,c}. Let X = {ab,abahababab...} C A* and letO = XA®. ThenO is
open. Each subs@a(u), u € X is represented iB® as

OA(U) = OB(U) N OB(ua) N OB(Ub) N OB(uaa) N OB(uab) N OB(uba) N OB(Ubb) N...

and
O:OA(Ul)UOA(Uz)U..., u € X

HenceOis az9 set inBY.

To show thatO is 59 complete forB we use Proposition 20 is not open inB®. Indeed, because
otherwise, there exists a finite stringvhose all possible continuations with letters fr&@are inO and
that is a contradictionO is also not closed iB®. To see this, note that the complement®fO in A®
is the setX A® whereX C A* is given asX = {b,aa,abh abaa...}. ForOto be closed irB*, O should
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be open iB®. This means that there should exist a finite stimghose all possible continuations with
letters fromB are inO which is again a contradiction.

ThusO ¢ 29 andO ¢ N? in B® and hence it is complete f&? in BY.

Next suppos€ is a closed set iA“. We show how to represefitin B®. Let % be the indexed set
of prefixes ofC. ThenC can be represented Bf as

C=(0s(v), VE %3
EachOg(v) is a closed set il and henceC being an arbitrary intersection of closed setSBit is
closed. Thu€ € M? in A® remains? in B. |
We generalise the above Lemma to the entire Borel hierarcthyei following theorem.

Theorem 1 Let A and B be two alphabets such thatB. We have the following in the Borel hierarchy:

1. Forl1<a < wanda odd,
(a) asetXe ZJ in the space & jumps toz . , in the space B
(b) aset Xe MY in the space & remainsmY in the space B.

2. Forl1<a < wanda even,
(@) asetXe 29 in the space & remainsZ? in the space B
(b) asetXe MY in the space & jumps to9_ ; in the space B.
3. Fora > w, az (resp.MY) set remaing? (resp.NY) on going from the space“o B®. That s,
the sets stabilise.

Proof The proof is by induction ow. For the base casea,= 1, the result follows from Lemma 1.

The inductive case is relatively straightforward, givee thductive structure of the Borel hierar-
chy. For convenience, we subscript the sets wWitbr B to denote whether they are setsAf or B®
respectively.

Suppose k o < wanda is odd. Then

Zg,x = I‘IS,_LX [by definition]
= JNY .y [by induction hypothesis]

_ 50
=2g41Y

N9 x =Zax = N1 x = Ma_1x = [1Z3_1x [by definition]
=(Za_ 1y [by induction hypothetis]
=MQy
Now, suppose k¥ a < w anda is even. Then
>0 x =\JNY_1x [by definition]
=|JNY_1v [by induction hypothesis]

_s0
—za,Y
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N9x =Zax = UMY 1x = o 1x =25 1x [by definition]
= ﬂ Z v [by induction hypothetis]
:na+1,v

Finally,

wX—UZnX— Uan—

n<w n<w

and 0
an = Zw,Y = n?o.,x

The above result can be concisely summarised by Figure 1.

0 g g () ()

0 0
X} %3 3 %5 =% 2411 2

0 0
ng n3 ng ng e Mo My

Figure 1: Jumps in the Borel hierarchy

4  Applications

The result we showed has interesting consequences in ttie fieboth formal verification and linguis-
tics.

4.1 Formal verification

As we mentioned in the introduction, to formally verify a céae systemM (a piece of hardware or
software which interacts with users/environment), werofteodel the system as a finite graf#iM).
Two players, the system player and the environment plager pkay an infinite game d&(M). The goal
of the system player is to meet a certain specification onlalsponG(M) and that of the environment
player is to exibit a play which does not meet it.

The result stated in this paper represents situations whergystem player is unsure about the exact
moves of the environment player. This shows that in suchuatsiin, the system player might have to
strategise at a higher level of the hierarchy in order to aetior this uncertainty.

It can also be used to represent situations where the untigmyodel might change (expand). Let
M be the original system and’ be the expanded system (which is generated fkbry the addition
of a module say). If the objective of the system playeGiiM) was to reach one of the states in some
subsetR of G(M) (reachability) then it is enough for her to play positiogalHowever, in the bigger
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graphG(M’) she not only has to rea¢hbut also has to stay within the states of the original grapk )
in order to achieve the same objective. This is the Mulleectdje which is a level higher.

Example 2. Consider the example shown in Figure 2. Player 0 nodes hae depicted as) and
Player 1 nodes d3. Suppose initially the system M and the objective of Player 1 @&(M) is to reach
vz. Then the winning set is the set of all sequence¥ ia {Vp,Vv1,V2,v3} in which v3 occurs in some
position. That isWin= {u | 3i, u(i) = vs}. This is a reachability condition where the reachability se
R={vs}. To win, Player 0 can either play or v, from vy and hence both these strategies are winning
strategies for her. Now suppose the system expand’ twhere, inG(M’), it is possible for Player

1 to go to the new node; from v;. Also supposéNin remains the same. Thafin is no longer a
reachability condition because then it would also incluglgugnces involving the vertey. It is rather a
Muller condition where the Muller se¥# = {{vo,v1,V2,Vv3}}. However, note that Player 0 does not have
a winning strategy in this game. That is because to win, skeadaisit vertexv; infinitely often from
which Player 1 can force the play throughinfinitely often.

[Va]

V2

V1 @ Vo Vi 6/0

G(M) G(M')

Figure 2: Jump from reachability to Muller

4.2 Linguistics

In [2] we demonstrated what seems to be a compelling siryilé@tween human conversations and
Banach-Mazur games. We showed how various conversatibedtives correspond to various levels of
the Borel hierarchy and how strategies of increasing coxitglare called for to attain such objectives.
Our result shows that when Player 1 is unsure about what P2ayeght say, it might be wise for her to
strategise at a higher level to account for this uncertaiitye engages in a conversation, believing she
is equipped with a strategy for all the situations the otHaygr might put her into when suddenly the
other player says something and she is left dumbfounded.

An example which still sticks in the memory of one of the aushafter almost 20 years is the mem-
orable line by Senator Lloyd Bentsen in his Vice-Presiaggmtebate with Dan Quale in 1984. Quayle's
strategy in the debate was to counter the perception thatalseae inexperienced to have the job, and
he did this by drawing similarities between his politicaterr and former President John Kennedy'’s.
Quayle seemed to be doing a good job in achieving his obgaiwinning condition, when Bentsen
interrupted and said:

Sir, | knew Jack Kennedy. | knew Jack Kennedy. And you, s&,rar Jack Kennedy.
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Quayle’s strategy at that point fell apart. He had no efiectiome back and by all accounts lost the
debate handily.

The way we model this as follows. Building on [2], we take eaubve in a game to be a discourse
which may be composed of several, even many clauses. Athgtrae consider such discourses as
sequences of basic moves, which we will be the alphabet. itnaisn of incomplete information about
the discourse moves, the set of moves (or the alphabet) &dahach Mazur game being played by the
players is different for the two players. Player O has anathehA (say) while Player 1 has an alphabet
B such thatA C B. Player 0 may or may not be aware of this fact.

Thus, from the point of view of Player O, if she is playing a Ben-Mazur game where she is unsure
of the set of moves available to Player 1, it is better for besttategise in such a way so as to account
for this jump in the winning set. In other words, if Player @iinning condition is at a leveh (say) of
the hierarchy, she is better off strategising for lavel1 given that she is unsure of Player 1's moves and
given that a set at level might undergo a jump to level+ 1. Thus Quayle might have even won the
debate had he strategiesed at a higher level expecting éxpected.
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We propose a logical framework combining a game-theoretic study of abilities of agents to achieve
quantitative objectives in multi-player games by optimizing payoffs or preferences on outcomes with
a logical analysis of the abilities of players for achieving qualitative objectives of players, i.e., reach-
ing or maintaining game states with desired properties. We enrich concurrent game models with
payoffs for the normal form games associated with the states of the model and propose a quantitative
extension of the logic ATL* enabling the combination of quantitative and qualitative reasoning.

1 Introduction

There are two rich traditions in studying strategic abilities of agents in multi-player games:

Game theory has been studying rational behavior of players, relevant for their achievement of quan-
titative objectives: optimizing payoffs (e.g., maximizing rewards or minimizing cost) or, more generally,
preferences on outcomes. Usually, the types of games studied in game theory are one-shot normal form
games, their (finitely or infinitely) repeated versions, and extensive form games.

Logic has been mostly dealing with strategic abilities of players for achieving qualitative objectives:
reaching or maintaining outcome states with desired properties, e.g., winning states, or safe states, etc.

Among the most studied models in the logic tradition are concurrent game models [5, 21]. On the
one hand they are richer than normal form games, as they incorporate a whole family of such games,
each associated with a state of a transition system; but on the other hand, they are somewhat poorer
because the outcomes of each of these normal form games, associated with a given state, are simply the
successor states with their associated games, etc. whereas no payoffs, or even preferences on outcomes,
are assigned. Thus, plays in concurrent game models involve a sequence of possibly different one-
shot normal form games played in succession, and all that is taken into account in the purely logical
framework are the properties — expressed by formulae of a logical language — of the states occurring in
the play. Concurrent game models can also be viewed as generalization of (possibly infinite) extensive
form games where cycles and simultaneous moves of different players are allowed, but no payoffs are
assigned.

Put as a slogan, the game theory tradition is concerned with how a player can become maximally
rich, or how to pay as little cost as possible, while the logic tradition — with how a player can achieve a
state of ‘happiness’, e.g. winning, or to avoid reaching a state of ‘unhappiness’ (losing) in the game.

The most essential technical difference between qualitative and quantitative players’ objectives is
that the former typically refer to (a temporal pattern over) Boolean properties of game states on a given
play and can be monitored locally whereas the latter are determined by the entire history of the play
(accumulated payoffs) or even the whole play (its value, being a limit of average payoffs, or of discounted
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accumulated payoffs). It is therefore generally computationally more demanding and costly to design
strategies satisfying quantitative objectives or to verify their satisfaction under a given strategy of a
player or coalition.

These two traditions have followed rather separate developments, with generally quite different agen-
das, methods and results, including, inter alia:

e on the purely qualitative side, logics of games and multiagent systems, such as the Coalition logic
CL [21], the Alternating time temporal logic ATL [5], and variations of it, see e.g. [15], [18], etc.,
formalizing and studying qualitative reasoning in concurrent game models;

e some single-agent and multi-agent bounded resource logics [9, 3, 19] extending or modifying
concurrent game models with some quantitative aspects by considering cost of agents’ actions and
reasoning about what players with bounded resources can achieve.

e extensions of qualitative reasoning (e.g., reachability and Biichi objectives) in multi-player con-
current games with ’semi-quantitative’ aspects by considering a preference preorder on the set
of qualitative objectives, see e.g., [6], [7], thereby adding payoff-maximizing objectives and thus
creating a setting where traditional game-theoretic issues such as game value problems and Nash
equlibria become relevant.

e deterministic or stochastic infinite games on graphs, with qualitative objectives: typically, reach-
ability, and more generally — specified as @-regular languages over the set of plays, see e.g. [4],
[10], [12].

e on the purely quantitative side, first to mention repeated games, extensively studied in game theory
(see e.g., [20]), which can be naturally treated as simple, one-state concurrent game models with
accumulating payoffs paid to each player after every round and no qualitative objectives;

e from a more computational perspective, stochastic games with quantitative objectives on dis-
counted, mean or total payoffs, in particular energy objectives, see e.g. [11].

o the conceptually different but technically quite relevant study of counter automata, Petri nets,
vector addition systems, etc. — essentially a study of the purely quantitative single-agent case of
concurrent game models (see e.g. [14]), where only accumulated payoffs but no qualitative objec-
tives are taken into account and a typical problem is to decide reachability of payoff configurations
satisfying formally specified arithmetic constraints from a given initial payoff configuration.

A number of other relevant references discuss the interaction between qualitative and quantitative
reasoning in multi-player games, e.g. [22], [16], which we cannot discuss here due to space limitations.

This project purports to combine the two agendas in a common logical framework, by enriching
concurrent game models with payoffs for the one-shot normal form games associated with the states,
and thus enabling the combination of quantitative game-theoretic reasoning with the qualitative logical
reasoning. Again, put as a slogan, our framework allows reasoning about whether/how a player can
reach or maintain a state of ‘happiness’ while becoming, or remaining, as rich as (rationally) possible,
or paying the least possible price on the way. The purpose of this extended abstract is to introduce and
discuss a general framework of models and logics for combined quantitative and qualitative reasoning
that would naturally cover each of the topics listed above, and to initiate a long term study on it.

2 Preliminaries

A concurrent game model [5] (CGM) . = (Ag,St, {Acta }acag, {acta }acag,out, Prop, L) comprises:
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e anon-empty, fixed set of players Ag = {1,...,k} and a set of actions Act, # 0 for each a € Ag.
For any A C Ag we will denote Acty := [[,c4 Act, and will use ﬁA to denote a tuple from Acty.
In particular, Actag is the set of all possible action profiles in ..

e anon-empty set of game states St.

e for each a € Ag a map act, : St — ?(Act,) setting for each state s the actions available to a at s.

e a transition function out : St x Actag — St that assigns the (deterministic) successor (outcome)
state out(q, 7Ag) to every state ¢ and action profile 7Ag = (ay,...,0) such that a, € act,(q)
for every a € Ag (i.e., every (&, that can be executed by player a in state g).

e a set of atomic propositions Prop and a labelling function L : St — Z2(Prop).

Thus, all players in a CGM execute their actions synchronously and the combination of these actions,
together with the current state, determines the transition to a (unique) successor state in the CGM.

The logic of strategic abilities ATL* (Alternating-Time Temporal Logic), introduced and studied in
[5], is a logical system, suitable for specifying and verifying qualitative objectives of players and coali-
tions in concurrent game models. The main syntactic construct of ATL* is a formula of type ((C))7,
intuitively meaning: “The coalition C has a collective strategy to guarantee the satisfaction of the objec-
tive v on every play enabled by that strategy.” Formally, ATL* is a multi-agent extension of the branching
time logic CTL#, i.e., multimodal logic extending the linear-time temporal logic LTL- comprising the
temporal operators X (“at the next state”), G (“always from now on”) and U (“until”) — with strategic
path quantifiers ((C)) indexed with coalitions C of players. There are two types of formulae of ATL*,
state formulae, which constitute the logic and that are evaluated at game states, and path formulae, that
are evaluated on game plays. These are defined by mutual recursion with the following grammars, where
C C Ag, p € Prop: state formulae are defined by ¢ ::=p | —¢ | @ A @ | ((C))7, and path formulae by
vi=@ |-y yAY[Xy|GY|yUY.

The logic ATL* is very expressive and that comes at a high computational price: satisfiability and
model checking are 2ExpTime-complete. A computationally better behaved fragment is the logic ATL,
which is the multi-agent analogue of CTL, only involving state formulae defined by the following gram-
mar, for CC Ag, peProp: ¢ :=p| -0 | oA @ | (C)HXe | (C)Ge | ((C))(¢Ue@). For this logic sat-
isfiability and model checking are ExpTime-complete and P-complete, respectively. We will, however,
build our extended logical formalism on the richer ATL* because we will essentially need the path-based
semantics for it.

Arithmetic Constraints. We define a simple language of arithmetic constraints to express con-
ditions about the accumulated payoffs of players on a given play. For this purpose, we use a set
Vag = {va | a € Ag} of special variables to refer to the accumulated payoffs of the players at a given
state and denote by V, the restriction of Vg to any group A C Ag. The payoffs can be integers, ratio-
nals', or any reals. We denote the domain of possible values of the payoffs, assumed to be a subset of
the reals R, by D and use a set of constants symbols X, with 0 € X, for names of special real values (see
further) to which we want to refer in the logical language.

For fixed sets X and A C Ag we build the set T'(X,A) of terms over X and A from X UV, by applying
addition, e.g. v, +vp. An evaluation of a term 7 € T(X,A) is a mapping 0 : X UV4 — D. We write
7N [=t to denote that ¢ is satisfied under the evaluation 1. Moreover, if some order of the elements X UV,
is clear from context, we also represent an evaluation as a tuple from DIA+Val and often assume that
elements from X have their canonic interpretation. The set AC(X,A) of arithmetic constraints over X
and A consists of all expressions of the form 7 x#, where x € {<,<,=,> >} and t;,1, € T(X,A). We use
ACF(X,A) to refer to the set of Boolean formulae over AC(X,A); e.g. (t; <) A(fr, > 13) € ACF(X,A)

INote that models with rational payoffs behave essentially like models with integer payoffs, after once-off initial re-scaling.
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forty,n,t3 € T(X,A). We note that the language ACF(X,A) is strictly weaker than Presburger arithmetic,
as it involves neither quantifiers nor congruence relations.

We also consider the set APC(X, A) of arithmetic path constraints being expressions of the type w, * ¢
where a € Ag, * € {<,<,=,>,>} and ¢ € X. The meaning of w, is to represent the value of the current
play for the player a. That value can be defined differently, typically by computing the accumulated
payoff over the entire play, by using a future discounting factor, or by taking the limit — if it exists — of
the mean (average) accumulated payoff (cf. [20]). We note that the discounted, accumulated, mean or
limit payoffs may take real values beyond the original domain of payoffs D; so, we consider the domain
for X to be a suitable closure of .

3 Concurrent Game Models with Payoffs and Guards

We now extend concurrent game models with utility values for every action profile applied at every state
and with guards that determine which actions are available to a player at a given configuration, consisting
of a state and a utility vector, in terms of arithmetic constraints on the utility of that player.

Definition 1 A guarded CGM with payoffs (GCGMP) is a tuple Mt = (., payoff, {ga acag, {da }acAg)
where ./ = (Ag, St, {Acta }acAg, {acta facag,out,Prop,L) is a CGM and:

e payoff : Ag x St X Actag — DD is a payoff function assigning at every state s and action profile
applied at s a payoff to every agent. We write payoff (s, ﬁ)far payoff(a,s, 7)

e g,:Stx Act, - ACF(X,{a}), for each player a € Ag, is a guard function that assigns for each
state s € St and action o € Act, an arithmetic constraint formula g, (s, &) that determines whether
« is available to a at the state s given the current value of a’s accumulated payoff. The guard must
enable at least one action for a at s. Formally, for each state s € St, the formula \/ g pct, 8a (S, )
must be valid. Moreover, a guard g,(s, &) is called state-based if g,(s, &) € ACF(X).

e d, €[0,1] is a discount factor, for each a € Ag, used in order to define realistically values of infinite
plays for players or to reason about the asymptotic behavior of players’ accumulated payoffs.

The guard g, refines the function act, from the definition of a CGM, which can be regarded as a
guard function assigning to every state and action a constant arithmetic constraint true or false. In our
definition the guards assigned by g, only depend on the current state and the current accumulated payoff
of a. The idea is that when the payoffs are interpreted as costs, penalties or, more generally, consumption
of resources the possible actions of a player would depend on her current availability of utility/resources.

Example 1 Consider the GCGMP shown in Figure 1 with 2 players, I and II, and 3 states, where in
every state each player has 2 possible actions, C (cooperate) and D (defect). The transition function is
depicted in the figure. The normal form games associated with the states are respectively versions of the
Prisoners Dilemma at state s1, Battle of the Sexes at state sy and Coordination Game at state s3.

The guards for both players are defined at each state so that the player can apply any action if
she has a positive current accumulated payoff, may only apply action C if she has accumulated payoff
0; and must play an action maximizing her minimum payoff in the current game if she has a negative
accumulated payoff. The discounting factors are 1 and the initial payoffs of both players are 0.

Configurations, plays, and histories. Let 9t be a GCGMP defined as above. A configuration (in
) is a pair (s, i ) consisting of a state s and a vector i = (uy, ..., ux) of currently accumulated payoffs,
one for each agent, at that state. Hereafter we refer to accumulated payoffs as utility, at a given state. We
define the set of possible configurations as Con(9t) = St x DIAel. The partial configuration transition

function is defined as out : Con(90) x Actag x N — Con (1) such that out((s, u), o) =, 7) iff:



Nils Bulling & Valentin Goranko 37

C D
2, 2 | -3, 3
3,-3 | —1,—1

Prisoners Dilemma

I\” C D
L1 ] 1,1
11| 1,1

Coordination Game

D -1,—2| 2, 3

Battle of Sexes

(C,D)
(D,0)

Figure 1: A simple GCGMP.

(i) out(s, 3) — s/ (s is a successor of s if @ is executed).

(ii) assigning the value u, to v, satisfies the guard g, (s, o) for each a € Ag, i.e. u, = ga(s, a,) (each
agent’s move (, is enabled at s by the respective guard g, applied to the current accumulated utility
value u,).

(iii) u), = u, +d. - payoff, (s, Eg) for all a € Ag (i.e., the utility values change according to the utility
function and the discounting rate where / denotes the number of steps that took place).

A GCGMP 90 with a designated initial configuration (so, #4) gives rise to a configuration graph on
9 consisting of all configurations in Y reachable from (s, u_o>) by the configuration transition function.
A play in a GCGMP 90 is an infinite sequence 7 = co0%,c1 0. .. from (Con(90t) x Act)® such that
cn € O/\Ut(cn_l , 3,,_1) for all n > 0. The set of all plays in 901 is denoted by Playsyy. Given a play & we
use 7[i] and 7[i, o] to refer to the ith element and to the subplay starting in position i of 7, respectively.
A history is any finite initial sequence h = o0, c1041,. .. ,cn € (Con(MM) x Act)*Con(9M) of a play in
Playsgy. The set of all histories is denoted by Histgy. For any history 4 we also define A[i] as for plays
and additionally h[last] and h[i, j] to refer to the last state on & and to the sub-history between i and j,
respectively. Finally, we introduce functions -, -, and -* which denote the projection of a given play
or history to the sequence of its configurations, utility vectors, and states, respectively. For illustration,

let us consider the play w = cooc_g,clo_cl),.... We have that 7[i,o0] = ci7;,05+1m,...; m[i] = 053,-;
€[i, 0] = ci, i1, .3 WC[i] = ci; w[i] = &; w[i] = vi; and 7°[i] = 5; where ¢; = (s;, u}).

Example 2 Some possible plays starting from s\ in Example 1 are given in the following where we
assume that the initial accumulated payoff is 0 for both agents. We note that this implies that the first
action taken by any agent is always C.

1. Both players cooperate forever: (s1,0,0),(s1,2,2),(s1,4,4),...

2. After the first round both players defect and the play moves to s, where player I chooses to defect
whereas Il cooperates. Then I must cooperate while 1l must defect but at the next round can choose

any action, so a possible play is: (s1,0,0),(s1,2,2),(s2,1,1),(s2,0,—1), (s2,0,1),(s52,0,3), (s52,0,5),...

3. After the first round player I defects while Il cooperates and the play moves to s3, where they can
get stuck indefinitely, until — if ever — they happen to coordinate, so a possible play is:
(51,0,0),(s1,2,2),(s3,5,-2),(s3,4,—3),(s3,3,—4),...(53,0,—7), (s3,—1,-8),....

Note, however, that once player I reaches accumulated payoff 0 he may only apply C at that round,
so if player Il has enough memory or can observe the accumulated payoffs of I he can use the
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opportunity to coordinate with I at that round by cooperating, thus escaping the trap at s3 and
making a sure transition to s;.

4. If, however, the guards did not force the players to play C when reaching accumulated payoffs O,
then both players could plunge into an endless misery if the play reaches s3.

Strategies. A strategy of a player a is a function s, : Hist — Act such that if s,(h) = o then
h"[last], = ga(h*[last], a); that is, actions prescribed by a strategy must be enabled by the guard. Our
definition of strategy is based on histories of configurations and actions, so it extends the notion of strat-
egy from [5] where it is defined on histories of states, and includes strategies, typically considered e.g.
in the study of repeated games, where often strategies prescribe to the player an action dependent on
the previous action, or history of actions, of the other player(s). Such are, for instance, TIT-FOR-TAT
or GRIM-TRIGGER in repeated Prisoners Dillemma; likewise for various card games, etc. Since our
notion of strategy is very general, it easily leads to undecidable model checking problems. So, we also
consider some natural restrictions, such as: state-based, action-based or configuration-based, memo-
ryless, bounded memory, of perfect recall strategies 2. Here we adopt a generic approach and assume
that two classes of strategies .’” and .° are fixed as parameters, with respect to which the proponents
and opponents select their strategies, respectively. The proponent coalition A selects a .’P-strategy s4
(i.e. one agreeing with the class .#’”) while the opponent coalition Ag\A selects a .’’-strategy sag\4-
The outcome play outcome_playgy(c, (s4,5ag\4),/) in a given GCGMP 0t determines the play emerging
from the execution of the (complete) strategy profile (s4,5ag\4) from configuration ¢ in .

4 The Logic: Quantitative ATL*

We now extend the logic ATL* to the logic QATL* with atomic quantitative objectives being state or path
arithmetic constraints over the players’ accumulated payoffs. The semantics of QATL* naturally extends
the semantics of ATL* over GCGMPs, but parameterised with the two classes of strategies .’” and ..

Definition 2 (The logic QATL*) The language of QATL* consists of state formulae ¢, which constitute
the logic, and path formulae v, generated as follows, where A C Ag, ac € AC, apc € APC, and p € Prop:
pu=plac|-@|one|(A)yandy:=¢]|apc|-y[yAY[XY|Gy|YUY.

Let 0 be a GCGMP, c a configuration, @, @, @, state-formulae, v,Y,7v» path formulae, and | €
N. Further, let /P and .¥° be two classes of strategies as described above. The semantics of the
path constraints is specified according to the limit-averaging or discounting mechanism adopted for
computing the value of a play for a player. Then the truth of a QATL* formula at a position of a
configuration in MM is defined by mutual recursion on state and path formulae as follows:
M, c,l = p for p ePropiff peL(c’), M,c,l = acforace ACiff " | ac,
M, c,l = ((A)y iff there is a collective SP-strategy sa for A such that for all collective .#°-strategies

sag\a Jor Ag\A we have that M, outcome_play™ (c, (s4,5ag\a)5 1)L = 7.

Mz, =@ iff M,xn[0],] =@, M,n,l = apciff t*,1 = apc for apc € APC.
M, m,l =Gy iff M, x[i],l+i =y forallic N,
M, 7,1 =Xy iff Mz, 141y,
M, m,l =1Uy iff there is j € Ny such that M, w[j],1+ j = v and M, xw[i], I +i = forall 0 <i< j.
Ultimately, we define M,c = @ as M,c,1 = @. Moreover, if not clear from context, we also write

(0,50 for =

2We note that all strategies need to be consistent with the guards, so state-based strategies are only applicable in models
where the guards only take into account the current state, but not the accumulated payoffs.
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The semantics presented above extends the standard semantics for ATL* and is amenable to various
refinements and restrictions, to be studied further. For instance, if appropriate, an alternative semantics
can be adopted, based on irrevocable strategies [1] or, more generally, on strategy contexts [8] or other
mechanisms for strategy commitment and release [2]. Also, the nested operators as defined here access
the accumulated utility values and require plays to be infinite. Similarly to [9], one can consider variants
of these settings which may yield decidable model checking and better complexity results.

As the logic QATL* extends ATL", it allows expressing all purely qualitative ATL* properties. It
can also express purely quantitative properties, e.g.: (({a}))G(va > 0) meaning “Player a has a strategy
to maintain his accumulated payoff to be always positive”, or ((A)) (w, > 3) meaning “The coalition A
has a strategy that guarantees the value of the play for player a to be at least 3. Moreover, QATL* can
naturally express combined qualitative and quantitative properties, e.g. (({a,b}))((va+vp > 1)Up)), etc.

Example 3 The following QATL* state formulae are true at state s| of the GCGMP in Example 1, where
pi is an atomic proposition true only at state s;, for each i =1,2,3:

(i) ({({LII})YF(p1 Avp > 100 Avy > 100) A (({I,11}) XX{({11})) (G(p2 Avy =0) A F vy > 100).

(i) =({({I)G(prVvi > 0) A=({L,11})F(p3 NG(p3 A(vi+vir > 0))).

5 (Un)Decidability: Related Work and Some Preliminary Results

Generally, the GCGMP models are too rich and the language of QATL* is too expressive to expect
computational efficiency, or even decidability, of either model checking or satisfiability testing. Some
preliminary results and related work show that model checking of QATL* in GCGMPs is undecidable
under rather weak assumptions, e.g. if the proponents or the opponents can use memory-based strategies.
These undecidability results are not surprising as GCGMPs are closely related to Petri nets and vector
addition systems and it is known that model checking over them is generally undecidable. In [13], for
example, this is shown for fragments of CTL and (state-based) LTL over Petri nets. Essentially, the
reason is that the logics allow to encode a “test for zero”; for Petri nets this means to check whether
a place contains a token or not. In our setting undecidability follows for the same reason, and we will
sketch some results below.

Undecidability results. The logic QATL restricts QATL* in the same way as ATL restricts ATL*, due
to lack of space we skip the formal definition. As a first result we show that model checking QATL is
undecidable even if only the proponents are permitted to use perfect recall strategies and the opponents
are bound to memoryless strategies. More formally, let SP” denote the class of perfect recall state-based
strategies and S™ the class of memoryless state-based strategies. That is, strategies of the former class
are functions of type St* — Act and of the latter class functions of type St — Act.

Undecidability can be shown using ideas from e.g. [9, 13]. Here, we make use of the construction
of [9] to illustrate the undecidability by simulating a two-counter machine (TCM). A TCM [17] can
be considered as a transition system equipped with two integer counters that enable/disable transitions.
Each step of the machine depends on the current state, symbol on the tape, and the counters, whether
they are zero or not. After each step the counters can be incremented (+1), or decremented (—1) , the
latter only if the respective counter is not zero. A TCM is essentially a (nondeterministic) push-down
automaton with two stacks and exactly two stack symbols (one of them is the initial stack symbol) and
has the same computation power as a Turing machine (cf. [17]). A configuration is a triple (s,w;,w)
describing the current state (s), the value of counter 1 (w;) and of counter 2 (w;). A computation 0 is a
sequence of subsequent configurations effected by transitions.
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For the simulation, we associate each counter with a player. The player’s accumulated payoff encodes
the counter value; actions model the increment/decrement of the counters; guards ensure that the actions
respect the state of the counters. The accepting states of the two-counter machine are encoded by a special
proposition halt. Now, the following lemma stating the soundness of the simulation can be proved:

Lemma 1 (Reduction) For any two-counter machine A we can construct a finite GCGMP 94 with two
players and proposition halt such that the following holds: A halts on the empty input iff A contains a
play m with ¢ = (s°,(v0,v9)) (s, (v}, v})) ... such that there exists j € N with halt € L(s).

The next theorem gives two cases for which the model checking problem is undecidable. By the
previous Lemma we have to ensure that the halting state is reached which can be expressed by ((1))Fhalt.
We can also use purely state-based guards and encode the consistency checks in the formula as follows:
{(1))(vi =0Av, >0Ae; — v, =0Ae; — vy = 0)Uhalt where the proposition ¢; is added to the model
to indicate that the value of counter i is zero. Not that this information is static and obtained from the
transition relation of the automaton.

Proposition 1 Model checking the logic QATL is undecidable, even for the 2 agent case and no nested
cooperation modalities, where P = SP" and .° = S™. This does even hold either for formulae not
involving arithmetic constraints, or for state-based guards.

Restoring decidability. There are some natural semantic and syntactic restrictions of QATL* where
decidability may be restored; these include for instance, the enabling of only memoryless strategies,
imposing non-negative payoffs, constraints on the transition graph of the model, bounds on players
utilities etc. For instance, the main reason for the undecidability result above is the possibility for negative
payoffs that allow for decrementing the accumulated payoffs and thus simulating the TCM operations.
Therefore, a natural restriction in the quest for restoring decidability is to consider only GCGMP models
with non-negative payoffs. In this case the accumulated payoffs increase monotonically over every play
of the game, and therefore the truth values of every arithmetic constraint occurring in the guards and in
the formula eventually stabilize in a computable way, which in the long run reduces the model checking
of any QATL-formula in an GCGMP to a model checking of an ATL-formula in a CGM. One can thus
obtain decidability of the model checking of the logic QATL in finite GCGMP with non-negative payoffs
and perfect information. We will discuss these and other decidability results in a future work, where we
will also consider restrictions similar to [9].

6 Concluding Remarks
This paper proposes a long-term research agenda bringing together issues, techniques and results from
several research fields. It aims at bridging the two important aspects of reasoning about objectives and
abilities of players in multi-player games: quantitative and qualitative, and eventually providing a uni-
form framework for strategic reasoning in multi-agent systems.

Acknowledgements: We thank the anonymous referees for detailed and helpful comments and ad-
ditional references.
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In this paper we investigate lossy channel games under iplteninformation, where two players
operate on a finite set of unbounded FIFO channels and onerptapresenting a system component
under consideration operates under incomplete informatibile the other player, representing the
component’s environment is allowed to lose messages fremttannels. We argue that these games
are a suitable model for synthesis of communication prdsoetere processes communicate over
unreliable channels. We show that in the case of finite mesalghabets, games with safety and
reachability winning conditions are decidable and finiites observation-based strategies for the
componentcan be effectively computed. Undecidabilityfegak) parity objectives follows from the
undecidability of (weak) parity perfect information ganvesere only one player can lose messages.

1 Introduction

Lossy channel systems (LCSs), which are finite systems cariwaing via unbounded lossy FIFO
channels, are used to model communication protocols sutihkaprotocols, a canonical example of
which is the Alternating Bit Protocol. The decidability odnification problems for LCSs has been well
studied and a large number of works have been devoted toaénglautomatic analysis techniques. In
the control and synthesis setting, where games are theahaamputational model, this class of systems
has not yet been so well investigated. In [1], Abdulla et sfablish decidability of two-player safety and
reachability games where one (or both) player has downwelaskd behavior (e.g., can lose messages),
which subsumes games with lossy channels where one plagertifie environment) can lose messages.
They, however, assume that the game is played under pernfeatiation, which assumption disregards
the fact that a process has no access to the local statesesfticesses or that it has only limited
information about the contents of the channels. To the Hestioknowledge, games under incomplete
information where the players operate on unbounded ubielEhannels have not been studied so far.
We definelossy channel games under incomplete informatod show that in the case of finite
message alphabets, games with safety and reachabilityngieonditions are decidable and finite-state
observation-based strategies for the player who has inletenipformation can be effectively computed.
Algorithms for games under incomplete information cargyout an explicit knowledge based subset
construction [9] are not directly applicable to infinitexist games. Symbolic approaches [4] are effective
for restricted classes of infinite-state games like digcgetmes on rectangular automata [5]. The sym-
bolic algorithms that we present in this paper rely on the obamicity of lossy channel systems w.r.t. the
subword ordering, which is a well-quasi ordering (WQO)slItiell known that upward and downward-
closed sets of words used in the analysis of lossy channedrmgsan be effectively represented by finite
sets of minimal elements and simple regular expressionsg&pectively. Unsurprisingly, the procedures
for solving lossy channel games under incomplete inforometihat we develop manipulate sets of sets of
states. Thus, our termination arguments rely on the fatthileasubword ordering is in fact a better-quasi
ordering (BQO) [7, 8], a stronger notion than WQO that is presd by the powerset operation [6].

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13) © R. Dimitrova, B. Finkbeiner
EPTCS 112, 2013, pp. 43-51, doi:10.4204/EPTCS.112.9
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Figure 1: A communication protocol with partially specifieg CEIVER process. For processEREIVER

we haveXy = {ag, a1, b0, b1, u} andZ5 = {bp,b; }. The property that the implementation must satisfy is
that location 4 in 8NDER is not reachable, i.e., the receiver does not acknowledgsages that have
not been sent, and once all messages and acknowledgenuntgréévious phases have been consumed,
the receiver can only send one delayed acknowledgement tNat by using an extra channel and an
extra location in processECEIVER we can ensure that the error location is in proceSsRVER.

2 Lossy Channel Games under Incomplete Information

Lossy channel systems are asynchronous distributed systemposed of finitely many finite-state pro-
cesses communicating through a finite set of unbounded FHe@nels that can nondeterministically
lose messages. We consigiartially specified lossy channel systeméiere the term partially specified
refers to the fact that we consider a second ("friendly”)etyb nondeterminism, in addition to the ("hos-
tile”) one due to the model. More specifically, this secongetyf nondeterminism modelsiresolved
implementation decisiorthat can be resolved in a favorable way. We consider the chea these de-
cisions are within a single process, and thus we can w.laagume that the system consist of only two
processes: the process under consideration and the pacatiposition of the remaining processes.

Definition 1. A partially specified lossy channel system (L&3) tuple.Z = (%, 21,C,M,Zo,%1,23),
where for eactprocess identifier g {0,1}, <%, is a finite automaton describing the behavior of process
p, C is a finite set ofchannels M is a finite set ofmessagess = SyUZ; is the union of the disjoint
finite sets otransition labelsfor the two processes, aid C 3 is a subset of the labels of tipartially
specified process#. The automaton, = (Qp,q?,,ép) for a processp consists of a finite seQ,, of
control locations aninitial location q‘g and a finite sed of transitions of the form (g,a, Gr,Op,q’),
whereq,q € Qp, a€ Xp, Gr:C — {true, (=¢),€ (M-M*) [me M} andOp:C — {Im,?m,nop| me M}.
Intuitively, the functionGr maps each channel to a guard, which can be an emptiness test,cd the
letter at the head of the channel or the trivial guttgk. The functionOp gives the update operation for
the respective channel, which is either a write, a reagbpr which leaves the channel unchanged.

Example. Fig.1 depicts a partially specified protocol consistingwed torocesses, BIDER and Re-
CEIVER, communicating over the unreliable channklsandL. Process BNDER sends messages to
ReCEIVER over channeK and ReECEIVER acknowledges the receipt of a message using chanmébte
that we use guards that test channels for emptiness or &efitghletter of their contents.

The two processes are represented as nondeterministie-gtatie automata. ProcessN®ER es-
sentially runs the Alternating Bit Protocol. Processd®IVER, however, is onlypartially specified
its alphabet of transition labels, = {ag,a;,bp,bs1,u} is partitioned according to the unresolved deci-
sions in the process specification: The sulaset {bg, b, } of controllable transition labels specifies the
unresolved implementation decisions, namely what bit tedy# on channédl at location 1.
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The property that the protocol must satisfy is encoded asheachability of location 4 in process
SENDER. However, the automata can easily be augmented (with aa elsinnel and an error location
in process RCEIVER) in a way that the error location is in process¢EIVER. The property states that:

1. the receiver does not acknowledge messages that haveeeotdent, that is in location 2 in
SENDERthe language df is 0° and in location 0 in ENDER the language df is 1*,

2. once all messages and acknowledgements trailing fromiopie phases have been consumed (or
lost), the number of delayed acknowledgements the recearesend is bounded by one.

A configurationy = (g, 01, W) of . is a tuple of the locations of the two processes and a function
w: C — M* that maps each channel to its contents. Tikal configurationof . is y° = (3,02, €),
whereg(c) = ¢ for eachc € C. The set of possible channel valuation®\s= {w |w:C — M*}.

Thestrong labeled transition relatior+C (Qo x Q1 x W) x X x (Qp x Q1 x W) of . consists of all
tuples((go, a1, W), &, (0, d;,W)) (denoted g, a1, W) N (dp, 01, W) such thatifa€ Zp, thengy_, =01
and there is a transitioqy, a, Gr,Op, q’p) € 0 such that for eack € C all of the following conditions
hold: (1) if Gr(c) = (€ m-M*) thenw(c) € m-M*, (2) if Gr(c) = (= €) thenw(c) = ¢, (3) if Op(c) =Im,
thenw/(c) = w(c)-m, (4) if Op(c) =?m, thenm-w'(c) = w(c), and (5) ifOp(c) = nop, thenw/(c) = w(c).

Let < denote the (not necessarily contiguous) subword relatiod ©and let us define its extension
to elements oV as follows:w; < ws for wy, w, € W iff wy(c) < w,(c) for everyc € C.

The weak labeled transition relatior>C (Qp x Q1 X W) x Z x (Qp x Q1 x W) for . is defined
as follows: (qo,qz,W) = (gp,d,W) iff there existw; and w, such thatw; < w andw < w, and
(0o, q1,W1) 2 (dp, Oy, W2), i-e., the channels can lose messages before and afterttiae sansition.

Definition 2 (LC-game structure with incomplete informatior)et . = (2, ¢4,C,M,%0,21,25) be

a partially specified LCS, an@q,s C C be a set ofobservable channelthat includes the set of all
channels occurring in guards or read operationsgnThelossy channel game structure with incomplete
informationfor . andCopsis 4 (.Z,Cobs) = (S, —¢,C,M, 20,21, %35,Cops), Where:

e The set ofstatesof ¥ is S= {0,1} x Qp x Q1 x W. The first componenp of a state(p, qo, g1, W)
identifies the process to be executed and the remaining owesle the current configuration of
#. The set of initial states & is | = {(p,go,d1,W) | p€ {0,1}, o =03, a1 =, w= €}.

e The labeled transition relationsgC Sx X x Sand=-4C Sx Z x Sof ¢ are defined as follows:
for statess = (p,do,q1,w) ands = (p’,q,,0;,W) anda € Z we haves —>ag s iff ae Zp and
(9o, G, W) > (g, ¢y, W), and we haves =24 S iff ac =, and(qo, qr, W) = (g, oy, W).

Remark.The first component of states 8iis used to model the interleaving semantics and is updated
nondeterministically in the transition relatiohg (and=-g). For simplicity, in Definition 2 we do not
make any assumptions about the nondeterministic choicenmiwprocess to be executed. One natural
assumption one might want to make is that the selected mogast have at least one transition enabled
in the current state. This and other restrictions can bédydagbosed in the above model.

For the rest of the paper, |&f = 9(Z,Cops) = (S1,—¢,C,M, %g,21,%5,Cops) be the LC-game
structure with incomplete information for a partially sgiedd LCS.# and observable channelgys.

Player; plays the game under incomplete information, observing eeitain components of the
current state of the game. Udbps = Cops— (MU {€}) andObs= {0,1} x Qp x Hops Theobservation
function obs S— Obsmaps each state= (p,do,q:,W) in ¢ to the tupleobgs) = (p,do,h) of state
components observed [Blayer;, where for eactt € Cyps, if p= 1, thenh(c) = € and otherwise if
w(c) = g, thenh(c) = € and ifw(c) = m-w for somem e M andw’ € M*, thenh(c) = m. That is, when
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p = 0 we have forc € Cyps thath(c) is the letter at the head @f(c), whenc is not empty. Foo € Obs
we denote witlStatego) = {s€ S| obgs) = o} the set of states whose observation.is

Let S = {(p,q0,q1,w) € S| p= 0} be the states where process 0 is to be execute@andS\ S.

The game¥ is played byPlayer, andPlayer, who build up a playssagaesiajas - .., which is se-
quence of alternating states $nlabels inz2 = 35U {L} and labels irZ, starting with a stateg € I.
Each time the current state is 8, Player; has to choose a label from the &etU {_L}, that is either
a label fromZ5 of a transition enabled in the current state, or can be theiapelement! in case no
transition with label in=5 is enabled or if there exists an enabled transition withll&ben 2o\ 5.

Let Enabled(s) = {a€ Xy | 3s. s—a>g s'}. Note that for states;,s; € § with obgs;) = obg(s;) =0
it holds thatEnabled(s;) = Enabled(s;), and, abusing notation, we denote this set \kithbled(0).

For an observatiom = (0,0, h), the setAct;(0) = (Enabled(0) NX3) U {L | Enabled(0) N 25 =
0 or Enabled(0) N (2o \ Z5) # 0} consists of the transition labels tHlayer; can choose in a sste &
with obg(s) = 0. For a labela® € 52, the setAct,(0,a>) = ({a°} N Z3) U (Enabled(0) \ Z5) consists of
the transition labels whicRlayer, can choose when the current choicePtdyer; is a”.

The play is built byPlayer, respecting the choices dtlayer; and the transition relatiorsg.
Whens € &, thenal € Acty(obgs)) is the transition label chosen Wlayer; after the play prefix
soagaoslafal aI 18i-1S and g € Acty(obgs), & J). After Player; has made his choicé®layer, re-
solves the remaining nondeterminism by choosingnd the successor stae; to extend the play.

A playin¥ isasequenca S0%pa0S1871S1 - - - € (S (25 -2-9*US: (22 -5-9%) such thas €1,
for everyi > 0 it holds tha1s1 :>g S+1, and ifs € Sl thena® = L, andifs € & thena1 € Acty(obys))
anda; € Acty(obgs),a’). A play rtis finite iff last(71) has no successor #, wherelast(m) € Sis the
last element oft. The setPrefs(éf) C S- (=5 -Z-9)* consists of the finite prefixes of playsd# and we
denote withPrefs3(¢) = {1 e Prefs(¥) | last(1) € S} the set of prefixes ending &.

A strategy for Playey is a total functionfs : Prefs3(¢) — 25 such thatf;(1) € Acty(obglast(m))).

The outcome of a strategys fis the set of playOutcome(f;) such thatm = soagaoslaﬁal... €
Outcome( f3) iff for every i > 0 with § € S it holds thata? = f5(sagaosiaia - - S ).

We define a functiombs' : Prefs3(¥4) — (Obs- Zo)* - Obsthat maps a prefix iRrefs3(¥) to the se-
quence of state and action observations madelayer;: obs" (syajapsiaja; - . . &) = 0bs(sp) -obs(ap) -
obs(s;)-0bs(ay)...-0bs(s,), where fors € S we defineobs(s) = obg(s) if s€ S andobs(s) = € oth-
erwise, and fom € < we defineobs(a) = aif a € £y andobs(a) = € otherwise.

We call a strategyf5 for Player; obs"-consistentf for every pair of prefixesn and s in Prefs3(¥%)
for which obs’ (1) = obs™ (&) holds, it also holds thats () = f3(7B).

We are interested ifinite-statestrategies foPlayer,, that is, strategies that can be implemented as
finite automata. A finite statebs"-consistent strategy fdelayer, in ¢ is one that can be represented
as a finite automatonZs = (Qs, 4, (Qo X Hops) X (23 x Zo), p) with alphabet Qo x Hobs) X (£ x o),
whose transition relatiop C (Qs x ((Qo x Hobs) X (Z3 X Zg)) x Qs) has the following properties:

(i) foreachqe Qs, 0€ Qo x Hobs & € 25, a€ %o, anddy, o, € Qs, it holds that if(q, (o, (a”,a)),0}) €
p and(q, (o, (a’,a)),d,) € p, theng] = d, (i.e., the transition relatiop is determlnlstlc)

(i) foreachqe Qs ando € Qo x Hopsthere exist? € 4, a € 3o, d € Qswith (g, (0, (a’,a)),q) € p,
(i) if (g, (0, (a,a)),q}) € p anday € Act,((0,0),a°), then(q, (0, (a°,a2)),d,) € p for someg, € Qs,
(iv) if (a,(o,(af,a1)),01) € p and(q, (0, (a3,a2)), %) € p, thena; = a;.

The automaton#s defines arobs™-consistent strategys for Player;. According to the properties

of ., for eachrt € Prefs3(¥) with obs" (1) = 0pag01a; . .. On_18n_10, there exists a unique sequence
agajal | € Zﬁn such that there is a run ofs (also unique) on the worthagap01a7a; ... On_182 18 1.
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Let g be the last state of this run. We then defiaén) = a°, wherea” € == is the unique label that
exists by conditiongii) and(iv) such that there ar@c 3, andq € Qs such thatg, (on, (a”,a)),q) € p.

We now turn to the definition of winning conditions in LC-gasnender incomplete information. We
considersafetyandreachabilitywinning conditions foPlayer; defined by visible sets of states$h A
setT C Sisvisibleiff for every se T and everys' € Swith obgs') = obg(s) it holds thats' € T.

A safety LC-game under incomplete informatiufety(¢,Err) is defined by a LC-game structure
with incomplete informatior¥ and a visible seErr of error states tha®layer; must avoid. A strategy
f5 for Player; is winningin Safety(¢,Err) iff no play in Outcome( f3) visits a state irErr.

Note that according to this definitioRJayer; wins finite plays that do not reach an error state. If we
want to ensure that plays reaching a stat ithat corresponds to a deadlock i are not winning for
Player;, we can easily achieve this by appropriately instrumentfigndErr.

A reachability LC-game under incomplete informatiBeach(¥,Goal) is defined by a LC-game
structure with incomplete informatio# and a visible seGoal of goal states tha®layer; must reach. A
strategyf; for Player; is winningin Reach(¥¢,Goal) iff each play inOutcome( f5) visits a state irGoal.

Remark.The definition of visible sets allows th&trr N S; # 0 andGoalN'S; # 0. Thus, our definition
of visible objectives does not require that for each pairlafypm and & with obs" (1) = obs" (1)
(whereobs' is defined for plays analogously to prefixes) it holds tRkyer; wins m iff he wins 5.
For the algorithms, which we present in the next sections@iwing safety and reachability LC-games
under incomplete information, the objective flayer; does not have to satisfy this condition.

3 Algorithms for Solving Safety and Reachability Games

Better-Quasi Orderings. The subword orderingg on M* is a WQO (and so is the ordering onW
defined earlier). That means, it is a reflexive and transration such that for every infinite sequence
Wo, Wy, ... of elements oM™ there exist indices & i < j such thaw; < w;.

The subword ordering (as well as other WQOs commonly usedrification) is in fact also a BQO,
and so is the ordering dW. Hence they are preserved by the powerset operation. Hermmitehe
precise definition of BQOSs since it is rather technical arid itot necessary for the presentation of our
results. When needed, we recall its properties relevarddoarguments.

We extend= to a BQO= on the seSS of states irn# in the following way: fors= (p,qo,q1,W) € S
ands = (p,qp, 0, W) € S we haves < s'iff p=p/, go = qp, o = gy, obgs) = obgs) andw < w'.

A setT C Sis upward-closedrespectivelydownward-closefiff for every se T and everys € S
with s < s (respectivelys' < s) it holds thats' € T. The upward-closure of a s&tC Sis T 1= {s €
S|3s. se T ands < s}. For each upward (respectively downward) closedTset Sando € Obs the
setT’={se T | obgs) = o} is also upward (respectively downward) closed. WeZlgt(S) = {uC S|
u#0, u=ut and3o € ObsVs € u. obgs) = o} and foru € Zops(S) we defineobgu) in the obvious
way. The setZyps(S) andobs: Zyps(S) — Obsare defined analogously, requiring that the elements are
downward-closed instead of upward-clos&fn(S) is the set of finite sets itops(S).

The transition relatiors4 enjoys the following property: i§ :§g s ands=<¢’, thens’ :39 s. Thus,
the set of predecessors w.r.t. some X of any set of states is upward-closed. For LCSs the set of
successors w.r.t. songec X of any set of states is a downward-closed set.

LetPre: 2(S) x Z — 2(S) be the function defined d&e(T,a) = {s€ S| 3 € T. s=24 ¢} and let
Post : 2(S) x = — 2(S) be the function defined @&st(T,a) = {s€ S| 35 € T. § =, s}. As recalled
above, for eacli C Sand eacla € Z, Pre(T,a) is upward-closed anBost(T,a) is downward-closed.
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We define the functionBreg : Zons(S) X Zo — Pin(%obd(S)) andPres : Zops(S) — Psin(%obs(S))
that map a seti € Zp<(S) to a finite set of upward-closed sets that partition the retspmeset of pre-
decessors ofi according to the observatio®ayer; makes. FormallyPreg(u,a) = {U € Zobs(S) |
Jo € Obs U = Pre(u,a) N State$o) } andPre;(u) = {U' € Zps(S) | 30 € Obs U = (Uaes, Pre(u,a)) N
Statego)}. Similarly, using the functiorPost above, we can define the successor functiBost :
Dobs(S) X Zo = Pfin(Pobs(S)) andPosty : Dops(S) — Psin(Zons(S)). Since the transition relation 6f
has finite branching, il € 2/ (S) thend’ € Z{in(S) for d’ € Posto(d,a) or d’ € Post;(d).

When analyzing LCSs, upward-closed sets are typicallyessprted by theiinite sets of minimal el-
ementsand downward-closed sets are representesithple regular expressiong hese representations
can be extended to obtain finite representations of elentéritgps(S) and Zons(S). By the definition
of < on S each visible set of states is upward-closed, and henceetis& rr and Goal in safety and
reachability games are finitely representable. In the vesgssume that they are represented such a way.

Our termination arguments rely on the following propertgr Every BQO= on a seiX, the superset
relation2 is a BQO on the set of upward-closed sets#iX) and the subset relatign is a BQO on the
set of downward-closed sets. This implies that a BQO onZops(S) and thatC is a BQO onZops(S).

LC-games under incomplete information with safety objectves. We describe a decision procedure
for safety LC-games under incomplete information whichdsda on a backward fixpoint computation.
Each step in the fixpoint computation corresponds to a stepeirgame, which is not necessarily
observable bylayer,. Thus, this construction is correct w.Rlayer; strategies that ar@bsconsistent,
where, intuitively, the functioﬁﬁsmaps a prefix to a sequence that includes also the (triviaBreations
of S states, andbsconsistency is defined analogouslydlos™-consistency. To avoid this problem, our
algorithm performs the fixpoint computation on a LC-gamedtire with incomplete informatiofy’
obtained from% by adding anidle transition for process 1. This game structure has the following
property: Player; has anobs’-consistent winning strategy in the gardafety(¢,Err) iff Player; has
anobsconsistent winning strategy anety({i, Err), which yields correctness of the algorithm.

Formally, the functionobs: Prefs3(¢) — (Obs - Zp)* - Obs is defined as:t;ﬁs(soagao...&) =
obs(so) - 0bs(ag) - ... - obgs,). The game structur® is the tuple = (S,1,~54,C,M, Z,21,%3,Cops)
whereZ; = 31 U {idle} andidle ¢ =, and=4 = —4 U{((1, 00, G, W), idle, (P, qo, a1, W)) | P € {0,1}}.

We define the se?(S) for Sas.Z(S) = {| € Zin(%ons(S)) || # 0 and3o € ObsYu € |. obgu) = o}
and defineobg) for eachl € Z(S) in the obvious way. We provide a fixpoint-based algorithnt tha
computes a s C .Z(S) such that each € B has the following property: iK C Sis the set of states
that the game can be currently in accordind’tayers’'s knowledge an&K Nu # 0 for everyu € |, then
Player; cannot win when his knowledge k6. Considering the sdtof initial states, if for somé € B it
holds that Nu# 0 for allu € |, thenPlayer; has noobs™-consistent winning strategy Bufety(¢,Err).

Our procedure computes a sequeBgeC B; C B,. .. of finite subsets ofZ(S). The computation
starts with the seBy = {{Err N Statego)} | o € Obs}. Fori > 0, we letB;;; = B UNi;1, where the set
Ni;1 of new elements is computed basedByand is the smallest set that contains elachZ’(S) which
is such that € Uy cg, e ((Uacs, Preo(U';@)) UPreg (U)) and:

o if | € 2(2(S)) then for every possible choi@ € Acts(obg(l)) of Player,, there exist an action
ac Acty(obgl),a’) andl’ € B; such that for everyl € I’ it holds thatPreg(u',a) Nl # 0,
o if | € 2(#(S)) then there existE € B; such that for every’ € I’ it holds thatPre; (u') N1 # 0.

The orderingC on Z(9) is defined such that fdrl’ € .Z(S), we havd C I’ iff for every u € | there
exists al € |’ such thau D U'. The ordering_ is a BQO, since is a BQO onZps(S). Intuitively, if |
belongs to the set of elements &f(S) in which Player; cannot win, so does evelywith | C I'.
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We say that the sequenBg, B1,Bs;... converges at K Min(By;1) C Min(Bg), whereMin(B;) is the
set of minimal elements d@; w.r.t. C. This condition can be effectively checked, since eBgcis finite.
We argue that there existska> 0 such that the sequence computed by the procedure desatiogd
converges & (and hence the procedure will terminate).

Let Fo,F1,F, ... be the sequence of upward-closed elementg?¢fZ (S)) whereF, = B; 1 for each
i >0. Asky,F1, ... isamonotonically increasing sequence of upward-closexb$elements afZ(S),
it must eventually stabilize, i.e., there ik& 0 such that 1 C F. Thus, sincds,1 C F if and only if
Min(Bi+1) € Min(B;), the sequencBy, B;,B;. .. is guaranteed to converge at sokne 0.

Proposmon 1. Let B= By, where the sequenceoﬂBl,Bz . converges at k. Then, Playehas an
obs-consistent wmmng strategy&afety(g Err) iff for every | € B there exists & | with un| = 0.

If Player; has anobs-consistent winning strategy Shfety(% Err), then Playet has a finite-state
obs"-consistent winning strategy in the original gassfety (¢, Err).

Proof Idea. A counterexample tree f(ﬁafety(% Err) represents a witness for the fact tRéayer; does
not have arobsconsistent winning strategy Enafety(% Err). Itis a finite tree with nodes labeled with
elements o&qs(S). If there is a € B such thaun| # 0 for everyu € |, a counterexample tree can be
constructed in a top-down manner. For the other directiomameshow by induction on the depth of the
existing counterexample trees that there exidts & such thaun| # 0 for everyu € I.

For the case wheflayer; wins the gameSafety(Sg, Err) we can construct a finite-statebs' -
consistent winning strategy félayer; in the gameSafety(¢,Err) by using as states for the strategy
automaton functions from observations to a finite’seC Z;,(Z?(S)) each of whose elementspre-
serves the invariant that for everg B there exists @ € | such thaunJyo, v="0. O

LC-Games under incomplete information with reachability objectives. For reachability games
we give a procedure based on forward exploration of the dettates representing the knowledge of
Player; about the current state of the game. Siftayer; can only observe the heads the observable
channels, his knowledge at each point of the play is a finitenieard-closed set, element 6fin(S).
To update this knowledge we define functioPsstd™ : Zfin(S) x 3o — P, (2f0(S)) and Post{®s:
(S — Phin(Zfi0(S)) that map a setl € Z{n(9) to a finite set of elements a#f"(S), each of
WhICh is a set of states th&tlayer; knows, accordlng to his current observation, the game may be
in after (a transition fromE, and) a sequence of transitions frdt. For eachd € 2fn(S) we have
d’ € Post3"S(d, a) (respectivelyd’ € Post$®S(d)) iff there exists a sequend,dy,...,ds € @f'"( S) such
thatdy € Postp(d, a) (respectivelydy = d), for every 1<i <nit holds thatd_; C S andd; € Post;(d;_1),
and for every (< i < j < n it holds thatd; Z d; and one of the following conditions is satisfied: (1)
d’ C Goal, d =dyandn=0 (i.e.,d’ C GoalN ), or (2) there exists a £ i < nsuch thaw; C d, and
=dn (i.e.,d' C§), or (3)d = {(0,05,0;,W) | (1,005,071, W) € ULodi} (ie.,d' C ).

We construct a finite set of trees rooted at the differentiptesknowledge sets fd?layer; at location
d®. The nodes of the trees are labeled with knowledge setswii elements of7f"(S). The edges
are labeled wit pairs of transition labels, i.e., eIemerﬁtEﬁf)x 2o, where the first element of a pair is a
possible choice dPlayer; and the second element is a corresponding choi¢dayfer, .

Formally, the forward exploration procedure construct®radt.7 in which the roots are labeled
with the sets{(0,03,00,£)} and all the setsl € Post25({(1,03,00,¢)} \ Goal). At each step of the
construction an open leaf nodewith labeld is processed in the following way:

¢ If d C Goal, we close the node and do not expand further from this node.

e If d Z Goal and eitheld C & and there exists an ancestomahat is labeled witld’ and such that
d’' Cd, ord C S, we close the node and do not expand further from this node.
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e Otherwise, we add the set of successons é6r eacha’ € Acts(obg(d)), eacha € Act;(obg(d),a”)
and eachd’ € Postd™(d,a) we add exactly one successtrlabeled withd’ and label the edge

(n,”') with (a”,a). The set of successors fta®,a) is denoted witfChildren(n,a’, a).
The finite branching of the transition relation @fand the fact that is a BQO on.@ﬁgs(S) imply

that each of the sef@ost3”S(d,a) and Post$PS(d) can be effectively computed, the set 0of roots and the
out-degree of each node are finite, and the above procedurmétes constructing a finite forest.

We label each node in .7 with a boolean valuevin(n). For a leaf noden with d(n) C Goal, we
definewin(n) = true and for any other other leaf nosewe definewin(n) = false The value of a non-
leaf node is computed based on those of its children by ireéng the choices dPlayer; disjunctively

and the choices oPlayer, conjunctively. Formally, for every non-leaf nodewe definewin(n) =
Vaieact (obgd(n))) NacAct (obgd(n)),a?) A\reChildren(n,a? a) win(r'), whered(n) is the set of states labeling

Proposition 2. Player; has an obs$-consistent winning strategy iReach(%¢,Goal) iff for every root n
in 7 it holds that wirfn) = true. If Player, has an ob$-consistent winning strategy Reach (%, Goal),
then he also has a finite state dbsonsistent winning strategy Reach(%¢,Goal).

Proof Idea. If all the roots are labeled wittrue we can construct a finite-statds™-consistent strategy
winning for Player; in Reach(%,Goal), by mapping each prefix iRrefs3(¥) to a label inZ3, deter-
mined by a corresponding path.ii and a fixed successful choice at its last node, if such patllawide
exist, or given an appropriate default value otherwise.tR@other direction we suppose that some root
is labeled withfalseand show that for angbs’-consistent strategys; for Player;, we can use the tree
to construct a playt € Outcome( f5) that never visits a state Boal. O

LC-games under incomplete information with parity objectives. We now turn to more general
w-regular visible objectives foPlayer; where the undecidability results established in [1] forfeer
information lossy channel games in which only one playerloae messages, carry on to our setting.

A visible priority function pr: Obs— {0,1,...,n} for natural numben € N maps each observa-
tion to a non-negative integer priority. For an infinite play= ssajapsia;a; ... we definepr(m) =
min{pr(o) | o € InfObg 1)}, wherelnfObg ) is the set of observations that occur infinitely ofterrin
and definewpr(1) = min{pr(obgs)),pr(obss1)),...}. A parity (respectivelyweak parity LC-game
under incomplete informatioRarity(¥¢, pr) (respectivelyWeakParity¥,pr)) is defined by a LC-game
structure with incomplete informatiogf and a visible priority functiorpr. A strategyf; for Player; is
winningin the parity gaméarity(%¢, pr) (weak parity gamé&VeakParity?, pr)) iff for every infinite play
1t € Outcome( f3) it holds thatpr () is even (respectivelwpr(m) is even).

Proposition 3. The weak parity game solving problem for LC-games undemnimete information, that
is, given a weak parity LC-game under incomplete informrmateakParity<, pr) to determine whether
there exists an obsconsistent winning strategy for Playein WeakParity%, pr), is undecidable.

Proof Idea. In [1] it was shown that in the perfect information setting tlveak parity problem for B-
LCS games, which are games played on a finite set of channelbigh player A has a weak parity
objective and only player B is allowed to lose messages, decidable. Their proof (given for A-LCS
games but easily transferable into a proof for B-LCS gangegased on a reduction from the infinite
computation problem for transition systems based on losaprel systems, which is undecidable [3].
We argue that this reduction can be adapted for our framewatk Player; in the role of player A
andPlayer;, in the role of player B. The fact that heRdayer; choses only transition labels and plays
under incomplete information does not affect the proof fek S games, since there player A just
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follows passively, while player B simulates the originas®m. The values of the priority function used
in [1] do not depend on the contents of the channels. Thusawelefine a visible priority function. O]

As a consequence, the parity game solving problem for LCegaumder incomplete information is
undecidable as well. As noted in [1], the construction frdwa proposition above can be used to show
undecidability of A-LCS and B-LCS games with Biichi and cioeBi objectives.

Summary of the results. The results of the paper are summarized in the followingrémeo
Theorem 1. For lossy channel game structures with incomplete infoiomat
e games with visible safety or reachability objectives foaylr; are decidable, and when Player
has an observation-based winning strategy, a finite-statl strategy can be effectively computed,
e games with visible weak parity objectives for Playare undecidable.

4 Conclusion

We showed that the game solving problem for LC-games undesrmplete information with safety
or reachability objective foPlayer; is decidable. LC-games under incomplete information wittren
general winning conditions, such as weak parity (as welli@shBand co-Biichi) condition can easily be
shown to be undecidable, using a reduction similar to thedaseribed in [1] for A-LCS games (which
are perfect information games defined on LCSs in which oné/mayer can lose channel messages). An
orthogonal extension that is also clearly undecidable éedtgalized control. This implies that suitable
abstraction techniques are needed to address the synphaisism within these undecidable settings.

AcknowledgementsThis work is partially supported by the DFG as part of SFB/ARAVACS.
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We present a strategic analysis of a trust model that has recently been proposed for promoting cooper-
ative behaviour in user-centric networks. The mechanism for cooperation is based on a combination
of reputation and virtual currency schemes in which service providers reward paying customers and
punish non-paying ones by adjusting their reputation, and hence the price they pay for services. We
model and analyse this system using PRISM-games, a tool that performs automated verification and
strategy synthesis for stochastic multi-player games using the probabilistic alternating-time tempo-
ral logic with rewards (rPATL). We construct optimal strategies for both service users and providers,
which expose potential risks of the cooperation mechanism and which we use to devise improvements
that counteract these risks.

1 Introduction

User-centric networks are designed to encourage users to act cooperatively, sharing resources or services
between themselves, for example in order to provide connectivity in a mobile ad-hoc network. The
effectiveness of such networks is heavily dependent on their cooperation mechanisms, which are often
based on the use of incentives to behave unselfishly. In this paper, we present an analysis of a cooperation
mechanism for user-centric networks [3], which combines a reputation-based incentive, used to establish
a measure of frust between users, and a virtual currency mechanism used to “buy” and “sell” services.

The cooperation model proposed in [3] was analysed formally by the authors using probabilistic
model checking [1, 2]. They verified several performance properties, specified in the probabilistic tem-
poral logics PCTL and CSL, on discrete- and continuous-time Markov chains models and, in [1], also
used Markov decision processes to assess the worst-case performance of service providers.

In this paper, we take a different approach and study the cooperation mechanism using strategy-
based analysis. The system is modelled as a stochastic multi-player game, in which service providers
and customers are modelled as players with objectives, expressed in the logic probabilistic alternating-
time temporal logic with rewards (rPATL) [4]. We model and analyse the cooperation mechanism using
PRISM-games [5], a probabilistic model checker for stochastic multi-player games. We use rPATL
model checking to identify weaknesses in the cooperation mechanism and then perform strategy synthesis
to discover important insights into the model: firstly, we construct and visualise potential attacks or
undesirable behaviour; secondly, we develop improvements to the system that alleviate these problems
and check their correctness.

Related work. Game-theoretic techniques have been applied to a wide variety of problems in the con-
text of computer networks, from network security [8] to self-organisation in ad-hoc networks [6]. Of
particular relevance to this paper is the work in [7], which gives a game-theoretic analysis of cooperative
incentive schemes in mobile ad-hoc networks and proposes the combination of trust and currency mech-
anisms used in [3]. Its effectiveness is analysed using a combination of theoretical and simulation results.
By contrast, we adopt a semi-automatic approach where the strategies are synthesised automatically by
the tool from rPATL specifications, and are then analysed to understand and improve the cooperation
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mechanism. The logic rPATL has been previously used to analyse cooperation incentives in micro-grid
energy management and decentralised agreement in sensor networks [4], but a detailed strategy-based
analysis was not performed.

2 Modelling the Cooperation Mechanism

2.1 The cooperation mechanism

The basic ideas behind the cooperation mechanism of [3] can be summarised as follows. We assume a
general model of providers offering services to requesters. Cooperation between users of the network
(requesters and providers) is managed through a combination of reputation and virtual currency.

Reputation is captured by a discrete trust measure, denoted trust;;, representing the extent to which
user i trusts user j, based on previous interactions between them and the recommendations provided by
the other users in the network. This is used to determine whether a service request from j is accepted
by i. A trust level T;; is computed as a weighted sum 7;; = o - trust;; + (1—a) - recs;j, where recs;; is
an “indirect” trust measure, taken as the the average value of trusty; for other users k (whereas trust;; is
called a “direct” measure of trust). By default, i will decide to accept j’s request if T;; is not below a
pre-specified service trust level, denoted st;. The parameter @ € [0, 1] controls the relative influence that
the direct and indirect measures of trust have on this decision.

The reputation scheme is then integrated with a virtual currency system, where services are bought
and sold between users, and the cost paid to i by j for a service is a function of trust;;. Assuming model
parameters for minimum and maximum costs Cy,, Cynar and threshold 77, the cost is defined as

Conin + CnasConin - (T" — trust;;) if trust;; < T’
C(trust;j) = . /
Cin if trust;; > T

Procurement of a service proceeds in several phases. First, a requester j chooses a provider i and
makes a request. If T;; > s1;, the request is accepted. In this case, the two users then “negotiate” the
service cost, using the function of trust;; given above. The negotiation may, however, fail: with proba-
bility ¢;, user i cancels the accepted request; this represents the “cooperative attitude” [1] of the provider
i. If not cancelled, the service is delivered and the requester chooses whether or not to pay the negotiated
price to the provider. If payment is made, the provider increases the trust measure of the requester by
one unit. If not, the measure is decreased by ¢d; units. On encountering a requester for the first time, a
provider shares the trust measure with the other providers.

2.2 A stochastic game model

We build a model of the cooperation mechanism of [3] as a (turn-based) stochastic multi-player game
(SMG). An SMG comprises a finite set of players and a finite set of states. In each state, exactly one
player chooses (possibly randomly) from a set of available actions. When an action is taken, the result is
a probabilistic transition, i.e. a successor state is chosen according to a discrete probability distribution.
The choices for each player are made by a strategy, which selects an action (or distribution over actions)
based on the history of the SMG so far. The strategies needed in this paper are memoryless (i.e. history
independent) and deterministic (i.e. do not use randomisation).

We developed the SMG model using the PRISM-games model checker, taking the PRISM model
of [1] as a starting point.!. The SMG model has one player for each user in the network. The choices

! All model/property files are available at: http: //www.prismmodelchecker.org/files/srl3trust/
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made by a “requester” player model the decision of which provider is selected at each point in the
system execution. In the basic model, the “provider” players do not have any choices to make; later (in
Sections 3.2 and 3.3), we will add choices for these players in order to synthesise strategies that can be
used to improve the cooperation mechanism. The stochastic aspects of the SMG model are primarily
required to model the fact that negotiations fail probabilistically.

We adopt the same basic network configuration as used in the original analysis of the protocol [1],
which comprises 3 providers and 1 requester. Even though this network is relatively small, it still cap-
tures the fundamental aspects of the protocol. For instance, observe that the decision whether to provide
a service to a requester does not depend on the trust level of other requesters in the network, so incor-
porating more requesters does not offer any more information about the dynamics of trust and provided
services. On the other hand, as we will show, using three service providers already allows us to identify
malicious strategies for the requester that can be generalised to an arbitrary number of providers (see,
e.g., the discussion about the number of unpaid requests in Section 3.1).

The parameters of the cooperation mechanism are also taken from [1] and are as follows. The trust
measure is an integer in the range 0 to 10 and is initially 5. We use &t=0.8 to compute trust levels, unless
stated otherwise, and the service trust threshold st; is set to 5 for all providers. We use a negotiation
failure probability of ¢;=0.05 for all providers 7, and the parameters used to compute prices are fixed at
Cinin=2,Cpax=10 and T'=8.

3 A Strategy-based Analysis

We now analyse the cooperation model described above, showing how the interplay between the two key
components of the protocol, trust and virtual currency, affects the cooperation dynamics. Our analysis is
based on strategy synthesis for properties in the temporal logic rPATL [4]. The logic combines features of
the multi-agent logic ATL, the probabilistic logic PCTL, and operators to reason about expected reward
or cost measures. A simple example of an rPATL formula is (({1,2}))P=0.75[F = goal], which asks “do
players 1 and 2 have a (combined) strategy to ensure that the probability of reaching a ‘goal’ state within
5 steps is at least 0.75, regardless of the strategies of other players in the game?”. Alternatively, we can
use a numerical query such as (({1,2}))Pax—2[F =>goal]: “what is the maximum probability of reaching
a ‘goal’ state within 5 steps that can be ensured by players 1 and 2?”. An example of property to reason
about rewards (or costs) is (({3}))R.,,[F*goal], which asks “does player 3 have a strategy to ensure
that the expected amount of reward r cumulated before reaching a ‘goal’ state is at most 10?”. The *
parameter lets us specify what the total reward should be if a ‘goal’ state is not reached: we can assign
zero reward (*=0), infinite reward (x=co) or allow reward to accumulate indefinitely (x=c). For precise
details of the logic rPATL and its semantics, we refer the reader to [4].

3.1 Unpaid requests

First, we consider the extent to which the requester can obtain services without paying for them. We
analyse the maximum (expected) number of unpaid services that the requester can obtain if its goal is to
get k services in total. This is expressed in rPATL as:

(({requester})) Rgﬁﬁ‘; [Fservices=k],

where unpaid denotes a reward structure assigning 1 to every unpaid request. The results for various
combinations of model parameters ¢ and td; are shown in Figure 1 (we use 0.5/2 to indicate that oo = 0.5
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and trust is decreased by #d; = 2 units upon an unpaid service; td; = inf means that trust is reset to 0 upon
an unpaid service).

ﬂPald ﬂunpald -#Provider 1 <-Provider 2 ¥ Provider 3

--+0.5/2 =—0.8/1 ==0.8/2 0.8/inf --0.5/2 =0.8/1 ==0.8/2 0.8/inf

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Trust of requester

Unpaid services
Fraction of unpaid services

0O 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13
k k Number of acquired services

(a) Number of unpaid services. (b) Fraction of unpaid services. (c) Strategy for 0.5/2 and k = 13.

Figure 1: Maximum unpaid services the requester can achieve in obtaining k services.

Figures 1a and 1b show the number and fraction, respectively, of services that are unpaid, for a
range of k. From Figure 1b, in particular, we see that, for parameters 0.5/2 and 0.8/inf, the behaviour is
fundamentally different from the other two - the portion of requests converges to 1 and 0, respectively.
For 0.8/inf, this behaviour is expected, because the trust measure is decreased to O upon non-payment;
however, the behaviour of 0.5/2 represents an attack on the trust model allowing the requester to receive
an unlimited number of unpaid services for a fixed cost. We synthesise an attacker (requester) strategy
for our model with 3 providers, for the case of acquiring k = 13 services: for a cost of 5 services,
the requester can get an unlimited number of unpaid services. We depict the strategy in Figure Ic.
Arrows represent “request-and-pay” (white arrow) and “request-and-do-not-pay” (grey arrow) actions of
the optimal requester strategy, depending on the number of services acquired so far.

This attack is possible if st; < (1 — ) - Tmax for some provider i, where T, is the maximum trust
level among all providers. We note that it is only viable if the network is sufficiently small since the
fixed cost increases with the number of providers sharing the trust information: to achieve the required
indirect trust measure recs;; > %, the requester must pay for a number of services proportional to the
number of providers. However, in order to work, this requires that all providers share their initial direct
trust measure even though they have not encountered the requester.

3.2 Cost of obtaining services

We now turn our attention to the virtual currency system, and study the minimum price at which the
requester can buy k services. For this, we use rPATL formula:

({({requester}))RSH_,[F “services =k].

Intuitively, the requester has a strategy to get one unpaid service for each paid service by executing the
following sequence: pay, not pay, pay, not pay, etc. However, a plot of the above property (see highlighted
sections of line ‘Original’ in Figure 2a), shows deviations from this pattern, where the requester can get
4 services for the price of 2 and, similarly, 11 services for the price of 9.

We synthesise a strategy achieving this and depict it in Figure 2b. We can see that all paid requests are
directed to one provider and the others only receive unpaid requests. In fact, by exploiting the reputation
system, the requester is even able to obtain 2 unpaid requests from provider 2.
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(a) Minimum cost to obtain k services. (b) Example strategy for k = 13.

Figure 2: Cost of k services for requester and a strategy example.

Next, we devise a fix by changing the model to allow providers to manage the way they share trust in-
formation between themselves: they can choose whether to share trust information after interaction with
the requester. We synthesise the optimal trust information sharing strategy for cooperating providers,
whose behaviour is shown as ‘Optimal/Heur.” in Figure 2a and can be seen to avoid the above shortfall.
Manual examination of the synthesised strategy reveals a suitable heuristic whereby providers share trust
information only when its direct trust of the requester is smaller than that of the others. We implement
this heuristic in the model and find that it yields the same model checking results as the optimal strategy.

3.3 Provider selection incentives

Another interesting feature revealed by the analysis of the strategy in the previous section is that the
proposed virtual currency system provides an incentive for the requester to only ever pay for services
from one provider (see Figure 3a). This is in fact optimal behaviour because, in the computation of
the service cost, only the direct trust measure is used. This may or may not be a desired feature for
the mechanism. We can show that a simple change that incorporates the maximum difference between
trust into the pricing model (i.e., cost is now computed as original_cost + maxy |trust;j — trusty;|, where
original cost is the cost assigned by the pricing scheme from Section 2.1) incentivises the requester to
disperse its requests between service providers.

Figure 3b shows the distribution of requests between providers and Figure 3¢ depicts the actions of
the optimal strategy in the new pricing scheme. This strategy contrasts with the strategy for the original
mechanism from Figure 2b because paid requests are now distributed uniformly across all the service
providers. This analysis of strategies has been performed using the “strategy implementation” feature of
PRISM-games, which allows the user to synthesise an optimal player strategy for some rPATL formula,
and then evaluate a second rPATL property on the modified SMG in which one coalition’s strategy is
fixed using the previously synthesised one. In this instance, we used the following rPATL formulae:

(({requester}) )RS _,[F services=k| and ((O)R}. _[F services=k],

min="?

where the first formula was used to synthesise the strategy and the second formula is the one used to
analyse it (r represents reward structures for Received, Paid, and Unpaid).
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(a) Original pricing scheme. (b) Modified pricing scheme. (c) Optimal strategy for 13 services.

Figure 3: Distribution of requests among providers.

4 Discussion and future work

We have presented a strategy-based analysis of a cooperation mechanism for user-centric networks, using
automated verification of stochastic multiplayer games. We have identified several undesirable properties
of the model, including attacks on the reputation system and inefficiencies of the virtual currency mech-
anism. These would have been difficult to discover using conventional model checking. Furthermore,
we have shown that an analysis of optimal strategies for the model can help us understand the incentives
that the model introduces to the system and to devise and verify improvements.

Our approach, which is based on probabilistic model checking, builds and analyses a more detailed
system model than other game-theoretic analysis techniques, such as [7]. On the one hand, this may
impose limitations on the scalability of our approach. On the other hand, we are able to look at the
protocol in fine detail and, as we have shown in this paper, identify subtle problems that arise even with
a small number of system components, but which may also generalise to larger models.

There are many interesting directions for future work. We plan to further develop our probabilistic
model checker PRISM-games to provide a wider range of analysis techniques. For example, we plan
to incorporate additional reward operators dealing with limit averages and discounted sums. We would
also like to investigate extensions of our techniques to incorporate partial-information strategies or more
complex solution concepts such as Nash and subgame-perfect equilibria.

Acknowledgments. The authors are part supported by ERC Advanced Grant VERIWARE, the Institute
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In the following paper we present a new semantics for the well-known strategic logic ATL. It is based
on adding roles to concurrent game structures, that is at every state, each agent belongs to exactly
one role, and the role specifies what actions are available to him at that state. We show advantages
of the new semantics, provide motivating examples based on sensor networks, and analyze model
checking complexity.

1 Introduction

ATL [1] is not only a highly-expressive and powerful strategic logic, but also has a relatively low (poly-
nomial) model checking complexity. However, as investigated by Jamroga and Dix [5], in order for the
complexity to be polynomial, the number of agents must be fixed. If the number of agents is taken as
a parameter, model checking ATL is A5-complete or A3P -complete depending on model representation
[6]. Also, van der Hoek, Lomuscio and Wooldridge show in [3] that the complexity of model checking
is polynomial only if an explicit enumeration of all components of the model is assumed. For models
represented in reactive modules language (RML) complexity of model checking for ATL becomes as hard
as the satisfiability problem for this logic, namely EXPTIME [3].

We present an alternative semantics that interprets formulas of ordinary ATL over concurrent game
structures with roles. Such structures introduce an extra element — a set R of roles and associates each
agent with exactly one role which are considered homogeneous in the sense that all consequences of the
actions of the agents belonging to the topical role is captured by considering only the number of “votes”
an action gets (one vote per agent).

We present the revised formalism for ATL in Section 2, discuss model checking results in Section 3
and conclude in Section 4.

2 Role-based semantics for ATL

In this section we will introduce concurrent game structures with roles (RCGS), illustrate them with an
example and show in Theorem 1 that treating RCGS or CGS as the semantics of ATL are equivalent.

We will very often refer to sets of natural numbers from 1 to some number n > 1. To simplify the
reference to such sets we introduce the notation [n] = {1,...,n}. Furthermore we will let A® denote the
set of functions from B to A. We will often also work with tuples v = (vi,...,v,) and view v as a function
with domain [n] and write v(i) for v;. Given a function f: A x B— C and a € A, we will use f, to denote
the function B — C defined by f,(b) = f(a,b) for all b € B.

*A preliminary version of this paper was presented during LAMAS workshop held at AAMAS on June 4th 2012, and a talk
based on that version was given at LBP workshop during ESSLLI summer school, August 2012. It is available on arXiv [2].
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Definition 1. An RCGS is a tuple H = (o/ \R,.Z,Q,11, 7, A, 8) where:

e o/ is a non-empty set of players. In this text we assume </ = [n| for some n € N, and we reserve n
to mean the number of agents.

Q is the non-empty set of states.

e R is a non-empty set of roles. In this text we assume R = [i| for some i € N.

X : Qx o — R. For a coalition A we write A, to denote the agents in A which belong to role r
at q, and notably <7y, are all the agents in role r at q.

1 is a set of propositional letters and = Q — @(I1) maps each state to the set of propositions true
init.

A : QO xR — N is the number of available actions in a given state for a given role.

For o/ = [n], we say that the set of complete votes for a role r in a state q is V,(q) = {vq €
[n]&@rl |y, <a<i(gr) Vrq(@) =G4}, the set of functions from the available actions to the number
of agents performing the action. The functions in this set account for the actions of all the agents.
The set of complete profiles at q is P(q) = [1,cgVi(q). For each q € Q we have a transition
function at q, 8, : P(q) — Q defining a partial function & : Q X U,eq P(q) — Q such that for all
q € Q, PEP(q) 6(q,P) = (P).

The following example illustrates how RCGS differs from an ordinary concurrent game structure:

Example 1 (Sensor networks). A wireless sensor network is a system composed of a number of (homo-
geneous) sensors that can be triggered by various stimuli. In Figure 1 we show a 1-tier (i.e., completely
homogeneous) sensor network with n sensors. There are two states in the system with labels correspond-
ing to an indicator of the network. —p stands for idle state of the network, while p indicates that the
network detected a stimulus. In this very simple example we say that k is our threshold, i.e. if at least
k number of sensors detect something, then p. Since all the sensors behave in the same way we say the
role of sensors is homogeneous. Hence the system can be modeled using only a single role. This gives
us the model depicted in Figure 1. One can easily add another role to the model if needed, for example
in a scenario with a “controller” who processes the reported signals, or in a 2-tier network with several
types of sensors.

Figure 1: A depiction of H; — a simple 1-tier sensor network.

A more complex example is presented in Figure 2, where we add another role to our structure, that
of a supervisor or controller. The supervisor can act upon sensors’ actions, i.e. if the sensors report
that p, the supervisor can perform q. As illustrated by the drawing, the supervisor has three actions
available: he can wait, he can reject the message or he can accept the message and proceed to state
q» performing q (e.g., call the police in an intrusion detection scenario). Finally, in Figure 3 we sketch
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Figure 2: A sketch of structure H;: a 1-tier sensor network with a supervisor.

a multi-tier example, with two different types of sensors, ni and na, each type with its corresponding role.
The transition function with the addition of a new role looks like this:

X1 Z2HAxp 2>t

Ogo (((x1,01 —x1), (x2,n2 —X2))) = {41;

qo, otherwise

0y, ((n1,m2)) = qo

where t,tr are thresholds set according to significance of the sensors.

<( 1, 17— 1)7(27 2= 2))

Figure 3: A sketch of structure H3z: a multi-tier sensor network example.

These simple structures show the benefit of using roles when modelling scenarios which involve
a high degree of homogeneity among agents. In this simplified sensor setting a sensor either signals
that he has made a relevant observation or he does not — a binary choice. If modelled using concurrent
game structures without roles, models would have 2" number of possible action profiles in state qq, since
the identity of the agents signaling that they have made an observation has to be accounted for. This,
however, is irrelevant for the high-level protocol — all that matters is how many sensors of a given type
signal that they have made an observation. With roles we can exploit this, and we only need to account
for the genuinely different scenarios that can occur — corresponding to the number of sensors of each
type that decide to signal that they have made an observation. In the case of just a single role, this
means that we get n as opposed to 2" number of different profiles, and the size of the model goes from
exponential to linear in the number of sensors. In general, as we will show in Section 3, we shift the
exponential dependence in the size of models from the number of agents to the number of roles.

Given a role r, a state ¢ and a coalition A, the set of A-votes for r at g is V,(q,A), defined as:

Vi(q,A) = {v € [JAngJiA(en)

Y, v(a) =4yl } :

a€[A(g.r)]
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The A-votes for r at g give the possible ways agents in A that are in role r at g can vote. Given a state ¢
and a coalition A, we define the set of A-profiles at g:

P(q,A) = {(vl,...,vw} ‘ 1<i< ’R| VRS Vr(q,A)}.

For any v € V,(q,A) and w € V,(q,B) we write v < w iff for all i € [A(g,r)] we have v(i) <w(i). If v <w,
we say that w extends v. If F = (vy,...,vg) € P(q,A) and F' = (V|,...,V}) € P(q,B) with v; < V. for
every 1 <i <|R|, we say that F < F’ and that F extends F’. Given a (partial) profile F’ at a state ¢ we
write ext (g, F) for the set of all complete profiles that extend F’.

Given two states ¢,q' € O, we say that ¢’ is a successor of g if there is some F € P(g) such that
0(q,F) =q'. A computation is an infinite sequence A = qoq; ... of states such that for all positions
i >0, giy1 is a successor of g;. We follow standard abbreviations, hence a g-computation denotes a
computation starting at ¢, and A[i], 1[0,i] and A[i,o0] denote the i-th state, the finite prefix goqi ...q;
and the infinite suffix ¢;q;. ... of A for any computation A and its position i > 0, respectively. An A-
strategy for A C o is a function s4 : Q — U,co P(q,A) such that s4(q) € P(q,A) for all ¢ € Q. That is,
s4 maps states to A-profiles at that state. The set of all A-strategies is denoted by strat(A). When needed
to distinguish between different structures we write strat(S,A) to indicate that we are talking about the
set of strategies for A in structure S. If s is an .o7-strategy and we apply &, to s(g), we obtain a unique
new state ¢’ = ,(s(q)). Iterating, we get the induced computation A, = goqi . .. such that g = g and
Vi >0:6,(s(gi)) = gi+1. Given two strategies s and s’, we say that s < 5" iff Vg € Q : s(q) < 5'(g). Given
an A-strategy s, and a state ¢ we get an associated set of computations out(s4,q). This is the set of all
computations that can result when at any state, the players in A are voting/acting in the way specified by
sa, thatis out (sa,q) = {Asq | s is an o/ -strategy and s > s }.

Given the definitions above, we can interpret ATL formulas in the following manner, leaving out the
propositional cases and abbreviations:

Definition 2. Given a RCGS S and a state q in S, we define the satisfaction relation |= inductively:
o S.q = ((A) O ¢ iff there is sp € strat(A) such that for all A € out(sa,q), we have S,A[1] |= ¢

e S,q=(A) 0% ¢’ iff there is sa € strat(A) such that for all A € out(sa,q) we have S,Ali] = ¢’ and
S, AJ] E ¢ for some i >0 and for all 0 < j < i

Towards the statement that interpreting formulas over CGS and RCGS is equivalent (Theorem 1) we
will describe a surjective translation function f translating each RCGS to a CGS. The following two
lemmas will be useful in formulating the proof of Theorem 1.

The translation function f from RCGS to CGS is defined as follows:

f<M7R7‘%7Q7 H7 n7A75> = <ﬂ7Q7H7 7t7d7 5/>

where:

d.(q) = A(q,r) where a € Z(q,r)
8 (q,0u,...,00) =8(q,v1,-.. S VIR|) where for each role r

ve=({ieZ(q,r) |0 =1}|,....{i € Z(q,r) | 0 = Alg,r)}])

We describe a surjective function m : strat(f(S)) — strat(S) mapping action tuples and strategies
of f(S) to profiles and strategies of S respectively. For all A C &/ and any action tuple for A at g,
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tg = (Olay, Oays vy Oy ) With 1 < 0, < dg(q) forall 1 <i < |A
following way:

, the A-profile m(t,) is defined in the

m(ty) = (v(t4,1),...,v(t,|R])) where for all 1 <r < |R| we have
v(tg,r) = (Ha€Arg [ aa=1}],....{a € Arg | 0 = A(q,1)}])

Lemma 1. For any RCGS S and any A C </, the function m : strat(f(S),A) — strat(S,A) is surjective.

Proof. Let ps be some strategy for A in S. We must show there is a strategy s4 in f(S) such that
m(sa) = pa. Forall g € Q, we must define s4(¢) appropriately. Consider the profile pa(q) = (vi,...,Vg|)
and note that by definition of a profile, all v, for 1 < r < |R| are A-votes for r and that by definition of
an A-vote, we have Y << (4, Vr(i) = |Argl. Also, for all agents a,a’ € A,, we know, by definition of f,
that d,(q) = dy(q) = A(q,r).

It follows that there are functions o : A — N such that for all a € A, a(a) € [d4(q)] and |[{a € A, |
ofa) =i} =v.(i)forall 1 <i<A(q,r),ie.

vr=({acArylala) =1}],....{a € Argla(a) = Alg,r)})

We choose some such & and s4 = (&(a1),...,a(a)))). Having defined s, in this way, it is clear that
m(sa) = pa. O

It will be useful to have access to the set of states that can result in the next step when A C <7 follows
strategy s4 at state g, succ(q,s4a) = {¢' € Q| IF € ext(q,sa) : 6(q,F) = ¢'}. Given either a CGS or an
RCGS S, we define the set of sets of states that a coalition A can enforce in the next state of the game:

force(S,q,A) = {succ(q,sa) | sa is a strategy for A in S}.

Using the surjective function m we can prove the following lemma, showing that the “next time”
strength of any coalition A is the same in S as it is in f(S).

Lemma 2. For any RCGS S, and state q € Q and any coalition A C <7, we have force(S,A,q) =

force(f(S),A,q).

Proof. By definition of force and Lemma 1 it is sufficient to show that for all 54 € strat(f(S),A), we
have succ(S,m(sa),q) = succ(f(S),sa,q). We show C as follows: Assume that ¢’ € force(S,m(ss),q).
Then there is some complete profile P = (v1,...,vg|), extending m(sa)(q), such that §(q,P) = ¢'. Let
m(sa)(q) = (Wi,...,wig)) and form P" = (v},...,v|p ) defined by v; = v; —w; for all 1 <i < |R|. Then
each v/ is an (&7 \ A)-vote for role i, meaning that the sum of entries in the tuple v} is |(o7 \ A),4|.
This means that we can define a function @ : &/ — N* such that for all a € &7, a(a) € [d,(q)] and
for all a € A, a(a) = s4(q) and for every r € R and every a € (o7 \ A), and every 1 < j < A(q,r),
Hae (' \A)y | a(a) = j}| = v,.(j). Having defined o like this it follows by definition of m that for
all 1 < j<A(g,r), [{acA,|ala)=j} =w(j). Then forall r€ Rand all 1 < j < A(q,r) we
have |{a € 47, | o(a) = j}| = v+(j). By definition of f(S) it follows that ¢' = §(¢,P) = 8'(q, &) so
that ¢’ € force(f(S),s4,q). We conclude that force(S, f(sa),q) C force(f(S),sa,q). The direction D
follows easily from the definitions of m and f. O

We now state and prove the equivalence.

Theorem 1. For any RCGS S, any ¢ and any q € Q, we have S,q |= ¢ iff f(S),q Eccs @, where f is the
surjective model-translation function.
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Proof. Given a structure S, and a formula ¢, we define true(S,¢) = {q € Q| S,q = ¢ }. Equivalence of
models S and f(S) is now demonstrated by showing that the equivalence in next time strength established
in Lemma 2 suffices to conclude that true(S, ¢) = true(f(S), ) for all ¢.

We prove the theorem by showing that for all ¢, we have true(S,9) = true(f(S),¢). We use in-
duction on complexity of ¢. The base case for atomic formulas and the inductive steps for Boolean
connectives are trivial, while the case of ((A)) O ¢ is a straightforward application of Lemma 2. For
the cases of ((A))[J¢ and ((A))¢% v we rely on the following fixed point characterizations, which are
well-known to hold for ATL, see for instance [4], and are also easily verified against definition 2:

((A)DO¢ < o A ((A) O (AT
(ANOU 2 <> 2V (91 A ((A)) O (AN 1% 2

We show the induction step for ((A))(J¢, taking as induction hypothesis true(S, @) = true(f(S),¢). The
first equivalence above identifies Q' = true(S, ((A))J¢) as the maximal subset of Q such that ¢ is true
at every state in Q' and such that A can enforce a state in Q' from every state in Q’, i.e. such that
Vg e Q' : 30" € force(q,A) : Q" C Q. Notice that a unique such set always exists. This is clear since
the union of two sets satisfying the two requirements will itself satisfy them (possibly the empty set).
The first requirement, namely that ¢ is true at all states in Q, holds for S iff if holds for f(S) by induction
hypothesis. Lemma 2 states force(S,q,A) = force(f(S),q,A), and this implies that also the second re-
quirement holds in S iff it holds in f(S). From this we conclude rrue(S, ((A))¢) = true(f(S), ((A)9)
as desired. The case for ((A))¢% v is similar, using the second equivalence. O

ey

Example 2 (Sensor networks contd.). 7o further illustrate the use of ATL interpreted over RCGS, we
provide example formulas that are related to the structures shown in Example 1.

In the structure depicted in Figure 1, if at least k sensors signal something, p becomes true (e.g. the
alarm is raised). This is expressed by formula ((A)) O p which is satisfied in the structure from Figure 1,
i.e. Hi,q0 F ((A)) O p whenever |ANZ(qo, 1)| > k. In Figure 2, the supervisor decides whether signals
that indicate p are strong enough in order for him to signal q, e.g. raise the alarm. In this scenario, the
sensors alone cannot raise the alarm, hence Hy,qo = ((A))Og whenever AN % (q1,2) = 0 (which means
that whenever the coalition A does not include the supervisor, g cannot be enforced). On the other hand,
H>,q0 = ((A)) O ((B)) O g whenever |ANZ(qo,1)| > k and BN %(q1,2) # 0 (which means that the
coalition of agents without a supervisor can enable the supervisor to take action).

3 Model checking and the size of models

In this section we will see how using roles can lead to a dramatic decrease in the size of ATL models.
We first investigate the size of models in terms of the number of roles, players and actions, and then we
analyze model checking of ATL over concurrent game structures with roles.

Given a set of numbers [a| and a number n, it is a well-known combinatorial fact that the number

(n+(a—1))!

of ways in which to choose n elements from [a], allowing repetitions, is Aa=D)! - Furthermore, this

number satisfies the following two inequalities:

(};T((;:ll))!)! <a" (nt(a—1))! <nt. )

and n!(a—1)!

UIf this is not clear, remember that n and a” are the number of functions [1]/ and [a]/") respectively. It should not be hard
to see that all ways in which to choose n elements from a induce non-intersecting sets of functions of both types.
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These two inequalities provide us with an upper bound on the size of RCGS models that makes it easy to
compare their sizes to that of CGS models. Typically, the size of concurrent game structures is dominated
by the size of the domain of the transition function. For an RCGS and a given state ¢ € Q this is the
number of complete profiles at g. To measure it, remember that every complete profile is an |R|-tuple of
votes v,, one for each role r € R. Also remember that a vote v, for r € R is an A(q, r)-tuple such that the
sum of entries is |.%7, ,|. Equivalently, the vote v, can be seen as the number of ways in which we can
make |.%7, ,| choices, allowing repetitions, from a set of A(g,r) alternatives. Looking at it this way, we

obtain:
(| (Blg )~ 1))
Pl =110 g -

We sum over all g € Q to obtain what we consider to be the size of an RCGS S. In light of Equation 2, it
follows that the size of S is upper bounded by both of the following expressions.

ﬁ(quQ HrGR ‘%J’A(q,r)) and ﬁ(quQ HreRA(qa r)‘%’r|)~ (3)

We observe that growth in the size of models is polynomial in a = maxycp rcrA(r,q) if n =|.<7| and |R| is
fixed, and polynomial in p = max,cp rer| <%, | if a and |R| are fixed. This identifies a significant potential
advantage arising from introducing roles to the semantics of ATL. The size of a CGS M, when measured
in the same way, replacing complete profiles at g by complete action tuples at g, grows exponentially in
the players whenever the players have more than one action. We stress that we are not just counting the
number of transitions in our models differently. We do have an additional parameter, the roles, but this is
a new semantic construct that gives rise to genuinely different semantic structures. We have established
that it is possible to use them to give the semantics of ATL, but this does not mean that there is not more
to be said about them. Particularly crucial is the question of model checking over RCGS models.

3.1 Model checking using roles

For ATL there is a well known model checking algorithm [1]. It does model checking in time linear in
the length of the formula and the size of the model. Given a structure S, and a formula ¢, the standard
model checking algorithm mcheck (S, ¢) returns the set of states of S where ¢ holds.

The algorithm depends on a function enforce(S,A,q,Q’),
which given a structure S, a coalition A, a state ¢ € Q and a for F € P(q,A) do

set of states Q" answers true or false depending on whether p < true
or not A can enforce Q' from g. This is the only part of the for F' € ext(q,F) do
standard algorithm that needs to be modified to accommo- if 5(¢,F") ¢ Q' then
date roles. p — false
For all profiles F € P(q,A) the enforce algorithm runs if p = true then
through all complete profiles F’ € P(g) that extend F. It is return rue
polynomial in the number of complete profiles, since for any return false
coalition A and state ¢ we have |P(q,A)| < |P(g)|, meaning
that the complexity of enforce is upper bounded by |P(q)|?. Figure 4: enforce(S,A,q,Q’)

Given a fixed length formula and a fixed number of states,
enforce dominates the running time of mcheck. It follows that model checking of ATL over concurrent
game structures with roles is polynomial in the size of the model. We summarize this result.

Proposition 1. Given a CGS S and a formula ¢, mcheck(S,¢) takes time O (le*) where l is the length of
¢ and e =Y. |P(q)| is the total number of transitions in S
qcQ
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Since model checking ATL over CGSs takes only linear time, & (le), adding roles apparently makes
model checking harder. On the other hand, the size of CGS models can be bigger by an exponential
factor, making model checking much easier after adding roles. In light of the bounds we have on the size
of models, c.f. Equation 3, we find that as long as the roles and the actions remain fixed, complexity of
model checking is only polynomial in the number of agents. This is a potentially significant argument in
favor of including roles in the semantics.

Roles should be used at the modeling stage, as they give the modeler an opportunity for exploiting
homogeneity of the system under consideration. We think that it is reasonable to hypothesize that in
practice, most large scale multi-agent systems that lend themselves well to modeling by ATL exhibit
significant homogeneity.

The question arises as to whether or not using an RCGS is always the best choice, or if there are
situations when the losses incurred in the complexity of model checking outweigh the gains we make in
terms of the size of models. We conclude with the following proposition, also shown in [2], which states
that as long we use the standard algorithm, model checking any CGS M can be done at least as quickly
by model checking an arbitrary S € f~(M).

Proposition 2. Given any CGS-model M and any formula ¢, let c(mcheck(M,§)) denote the complexity
of running mcheck(M, ). We have, for all S € f~ (M), that complexity of running mcheck(S, @) is
O (c(mcheck(M,¢))

Proof. tis clear that for any S € f~ (M), running mcheck(S, ¢ ) and mcheck(M, ¢ ), a difference in overall
complexity can arise only from a difference in the complexity of en force. So we compare the complexity
of enforce(S,A,q,Q") and enforce(M,A,q,Q") for some arbitrary g € Q, Q" C Q. The complexity in
both cases involves passing through all complete extensions of all strategies for A at g. The sizes of these
sets can be compared as follows, the first inequality is an instance of Equation 2 and the equalities follow
from definition of f and the fact that M = f(S).

(Argl + (Al g) =)\ |y (| —|Arg]) + (A(rg) — 1))!
I;( [Arg| (A(r,q) = 1)! ) H( (14| = Argl) (A(r,q) = 1)! >

< (H A(r, q)\Ar,q| % HA(Fv q)*%m&.;,)
=11 ( I1 A(w)) x H< 1 A(r,q))

réR \a€A,4 r€R \acd,,\Ary

reR

- (Hda(q) < I1 da(q)> =[] dulg)

acA ac/\A acad

We started with the number of profiles (transitions) we need to inspect when running en force on § at g,
and ended with the number of action tuples (transitions) we need to inspect when running en force on
M = f(S). Since we showed the first to be smaller or equal to the latter and the execution of all other
elements of mcheck are identical between S and M, the claim follows. O
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4 Conclusions, related and future work

In this paper we have described a new type of semantics for the strategic logic ATL. We have provided
illustrating examples and argued that although in principle model checking ATL interpreted over con-
current game structures with roles is harder than the standard approach, it is still polynomial and can
generate exponentially smaller models. We believe this provides evidence that concurrent game struc-
tures with roles are an interesting semantics for ATL, and should be investigated further.

Relating our work to ideas already present in the literature we find it somewhat similar to the idea
of exploiting symmetry in model checking, as investigated by Sistla and Godefroid [7]. However, our
approach is different, since we look at agent symmetries in ATL as the basis of a new semantics. When
it comes to work related directly to strategic logics, we find no similar ideas present, hence concluding
that our approach is indeed novel.

For future work we plan on investigating the homogeneous aspect of our ‘roles’ in more depth. We
are currently working on a derivative of ATL with a different language that will fully exploit the role
based semantics.

Acknowledgments: We thank Pél Grgnas Drange, Valentin Goranko and Alessio Lomuscio for helpful
comments. Piotr KaZmierczak’s work was supported by the Research Council of Norway project 194521
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A number of extensions exist for Alternating-time Tempdradjic; some of these mix strategies and
partial observability but, to the best of our knowledge, narkvprovides a unified framework for
strategies, partial observability and fairness condsaiin this paper we propose€r LKEO, a logic
mixing strategies under partial observability and epistepnoperties of agents in a system with
fairness constraints on states, and we provide a model otgealgorithm for it.

1 Introduction

A number of extensions exist for Alternating-time Tempdwagjic; starting from [7], partial observability
has been investigated by many authors, see for instancenBjederences therein. But, to the best of
our knowledge, no work provides a unified framework for stgéds, partial observability and fairness
constraints. For example, Jamroga and van der Hoek propaseoing other logics, ATOL, mixing
partial observability with strategies of agents [10]. Adathe same lines, Schobbens studied A4],
seen as the minimal ATL-based logic for strategies undeigbarbservability [9]. On the other hand,
some efforts have been made on bringing fairness to ATL. iksiance the work of Alur et al. [1], or
the work of Kluppelholz and Baier [11] introduce the notiohfairness constraints on actions, asking
for an infinitely often enabled action to be taken infinitelgea. For temporal and epistemic logics,
however, fairness conditions are normally providedtates Furthermore, it has been shown that (weak,
strong or unconditional) fairness constraints on actioas,be reduced to (weak, strong or unconditional,
respectively) fairness constraints on states (see [2]iniance). In this paper we propoAg& LKEO, a
logic mixing strategies under partial observability andstgmic properties of agents in a system with
unconditional fairness constrairns statesand we provide a model checking algorithm for it.

To motivate the need for fairness constraints in ATL undetigleobservability, consider the simple
card game example in [10]. The game is played between a péaykbra dealer. It uses three cards,
K andQ; A wins overK, K wins overQ and Q wins overA. First, the dealer gives one card to the
player, keeps one and leaves the last one on table. Thendherman keep his card or swap it with
the one on the table. The player wins if his card wins over #at’s card. Under ATL semantics,
the player cannot win the game: he cannot distinguish betwee example< A /K > and< A, Q >
(where< a,b > means "player has cam dealer has card’) and thus has to make the same action in
both states, with a different result in each case. Consideravariation of this game: the game does
not terminate after the first round. Instead, if the playersdaot win, cards are redistributed. In this case,
too, the player cannot win the game: for instance, he wilehavchoose between keeping or swapping
cards in< A K > and< A,Q >, so he won't be able to enforce a win because the dealer (tloaises

*This work is supported by the European Fund for Regional gveent and by the Walloon Region.
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the given cards) can be unfair and always give the losing pair if we add one fairness constraint per
intermediate state—i.e. the states in which the player tnvahdose between swapping or keeping—the
player has a strategy to finally win the game. In this case,Myeamnsider paths along which all fairness
constraints are met infinitely often: this situation cop@sds to a fair dealer, giving the cards randomly.
The player can thus finally win becauseA, K > will eventually happen—even if he cannot distinguish
it from < A,Q >—, so he knows a strategy to win at least a round: keeping his ca

Another example of application of fairness constraints TriAs Multi-Agent Programs [5]. These
programs are composed of interleaved agent programs aneédaiconstraints are used to avoid unfair
interleaving. Dastani and Jamroga express fairness asufaenof the logic ATL* [5]; in this paper,
instead, we deal only with ATL and therefore fairness camsts cannot be expressed as formulae of the
logic. The situation is similar to the case of LTL versus CTbdel checking: in the first case model
checking fairness is reduced to model checking a more confplenula using the same verification
algorithms; in the second case fairness is incorporatedb@spoke verification algorithms. In our work
we chose ATL over ATL* because of complexity considerati¢see Section 3).

The rest of the paper is structured as follows: Section 2gmteghe syntax and semanticsAdf LKEo
and Section 3 presents two model checking algorithms folatdje. Finally, Section 4 summarizes the
contribution and draws some future work.

2 Syntax and Semantics

This section presents the syntax and semantiég chﬂ<§o, an extension of ATL with partial observability
under fairness constraints on states. An extension wittohdervability under the same fairness con-
straintsAT LKE is also presented because the model checking algorithm'ITdano relies on the one

for AT LKE,.

Syntax Both logics share the same syntax, composed of the standavig@dh connectorsv( A, —,
etc.), CTL operatorsEX, EU, EG, etc.) [4], knowledge operator&{y, Er, Dr, Cr) [6] and strategic
operators ()X, (MG, (MU, (MW and their[['| counterparts) [1].

Models and notation AT LKF, andAT LKEo formulae are interpreted over mod&ls= (Ag, S Act, T, 1,
{~i},V,F) where (1)Agis a set oh agents; (2= S x ... x §, is a set of global states, each of which is
composed oh local states, one for each agent; £&2f = Act; x ... x Act, is a set of joint actions, each of
which is composed af actions, one for each agent; ()C Sx Act x Sis a transition relation between
states irSand labelled with joint actions (we wrie s if (s,a,5) € T); (5) | C Sis the a set of initial
states; (6) ~i} is a set of equivalence relations between statesr~ampartitions the set of states in terms
of knowledge of agent—s ~; s iff § = 5, i.e two states are indistinguishable for aggiftthey share
the same local state for (7) V : S— 2P labels states with atomic propositionsA®; (8) F C 2Sis a
set of fairness constraints, each of which is a subset &fsstat

Ajoint actiona = (ay, ...,a,) completesa partially joint actiorer = (&, ...,a’j) composed of actions
of agents in- C Ag—writtenar C a—if actions inafor agents il correspond to actions &-. Further-
more, we define the functidmg: Sx Act — 25 asimg(s,a) = {S € s> 5}, i.e.img(s, a) is the set of
states reachable in one step frettrougha.

A model M represents a non-deterministic system where each ageminhiasperfect information
about the current global state. One restriction is madd pivs,s € Ss~; s = enableds,i) =
enableds i) whereenableds,i) = {a € Act|3s € Sac Acts.t.(a) CaAs->g}. This means that
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the actions an agent can perform in two epistemically edgmiastates are the same. Theabled
function is straightforwardly extended to groups of agents

A pathin a modelM is a sequencer = sp =% s, =% ... of elements ofl. We user(d) for s4. A
states is reachablein M if there exist a patht andd > 0 such thatr(0) € | andm(d) =s. A pathmis
fair according to a set of fairness conditiofs= { f1, ..., fx} if for each fairness conditiof, there exist
infinitely many positiongl > 0 such thatt(d) € f. A statesis fair if there exists a fair path starting it

A strategyfor agent is a functionf; : S— Act where, for any stats fi(s) € enableds,i); a strategy
maps each state to an enabled action. We call these stsatpgjal strategies A uniform strategyfor
agenti is a global strategy; whereVs,s € Ss ~j s = fi(s) = fi(s), i.e. ageni cannot choose two
different actions for two indistinguishable states. HBfmategy outcomeom a states for a strategyf;,
denoted without(s, f;), is the set of paths a strategy can enforce,ou(s, fj) = {m= s =N S...|S =
SAVd > 0,5411 € iImg(Sy,ad+1) A (fi(sq)) C ag+1}. The definition of outcomes is naturally extended to
sets of strategies for a subset of agents.

Semantics The semantics of both logics are defined over states of a nkdbgl defining the relations
M,s=F, @ andM, s=5, @, for ATLKE, andATLKE,, respectively.M can be omitted when clear from
the context. Both relations share a part of their semantiesyrites =" @ if s #Eo @ ands #EO @. The
sk=f, p ands ):';0 @ relations are recursively defined over the structurep @ind follow the standard
interpretation for most of the operators=F pif p € V(s); v and— are interpreted in the natural way.
s=F K if @ is true in all fair reachable states indistinguishable frefor agenti, s =F Er g if all
agents i know ¢, s =F Dr g if, by putting all their knowledge in common, agentsiofvould know,
ands|=F Croif @is common knowledge among agentsd6]. s|=" Ey if there is a path starting
at s satisfyingy, m=F Xgif m(1) satisfiesp, =" @U @ if @ is true along the path unti, is true,
= Goif @is always true alongr, andim = @W if 1= (U @) vV G [4].

The meaning of thél") operator is different in the two semantics:
@ s FEO (M y iff there exists a set aflobal strategiesfr, one for each agent in, such that for alfair
paths T € out(s, fr), m=F y;
(i) s |:';0 (M y iff there exists a set afiniform strategies fr, one for each agent iR, such that for all
g ~r s, for all fair paths < out(s, fr), m=" .

The ] operator is the dual off): s|=" [Mw iff s=F —(M)-y.

3 Model Checking AT LK, and AT LKF,

Model checking ATLKE,  The model checking algorithm faxT LK, is defined by the functiof.]%, :
AT LKE, — 25 returning the set of states of a given modikatisfying a giverAT LKE, property. This
function is defined in the standard way for Boolean connsctGi’L and knowledge operators [4, 13].
The ['] operators are evaluated as follows:

[[F1X @] = Prer ([9]5, N Fairy)
[[M@U @] = HZ.([e]Fo N Fairr) U ([en] fo N Prer(2))

[F1Ge]%o = vZ.[@]5on () Prer (uY.(ZN f)u([¢]fNPrer(Y)))
feF
VZ‘(II(pZ]]IFom Fair[l’])

F _
[MeWelio= " ([u]F, N Nyer Prer (UY-([@:]F N Faire) U (Z0 ) U ([@1]F N Prer (Y)))
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wherePrer(Z) = {s|Var € enableds,I"),3a s.t.ar C aAnimg(s a)NZ # 0} andFairr) = [[I]G true]f,.
pZ.t(Z) andvZ.1(Z) are the least and greatest fix points of functid). Intuitively, the Prejr(2)
operator returns the set of states in whichannot avoid to reach a state@f Thus, [[F1G¢]F, returns
the set of states in which cannot avoid a path of states [af]%, going through all fairness constraints
infinitely often; Fair - is the set of states in whidhcannot avoid a fair path. Note that ttie) operators
can be computed using tlig] and— operators, but can also be computed directly using the duals
from the ones above. For examdlé‘)Gq)]]fo = vZ.([[(p]]fou Fairm) NPrer (2), wherePre<r>(Z) =
Prer)(Z) = {s|3ar € enableds, ") such thatva,ar C a —> img(s,a) C Z}. Z C Sis the complement
oftheseZz C S

The correctness of the model checking algorithmABiLKE, follows from Theorem 1.

Theorem 1. For all states = S, s=F, @ if and only if se [¢]f..

Proof sketch.First, Reacly (Py,P2) = uY.RU (PLN Prer(Y)) computes the set of states in whith
cannot avoid a finite path of statesifto a state oP,. We can prove it by induction over the computation
of the least fix point. It is true by definition of the least fixippand thePrer; operation.

Then, for the|Gg operator[[[FGe]F, = vZ.[@]F,NNter Prer(uY.(Znf)u U([elf,N Prer(Y)))
= vZ.[g]5, N Ntcr Prer(Reachy ([¢]F,,ZN f)) computes the set of states in whictcannot avoid a
fair path (i.e. going through eadhe F infinitely often) that satisfie&@. We prove it by induction over
the computation of the greatest fix point and by using whableas proved just above.

Thanks to this, we can easily prove tifitir ;) = [[[]Gtrue]f, computes the set of states in which
cannot avoid a fair path (it is just a partlcular case of[fi& operator).

Then,[I']X and[I']U operators compute the set of states in wiicannot avoid a successorfig]%,
in which I cannot avoid a fair path, respectively in whiCtcannot avoid a finite path through states of
[@]f, to a state of @]f,, in whichI" cannot avoid a fair path. In particular, the proof fBtU directly
follows from the proof forReacly.

Finally, the proof for thgl'|W operator is similar to the one f@f |G operator. The proof of correct-
ness of the algorithms fofl") operators follows from the proof fdi'] operators, the duality of these
operators and standard fix point properties. O

Model checking AT LKpo — basic algorlthm A basic algorithm is presented in Algorithm 1. It relies
on the model checking algorithm f&T LK . It uses two sub-algorithmsSplit and [. ]]f0|strat, where
strat is a strategy represented as a set of state/action pairs.laftbe is a modified version of the
algorithm described in the previous section WRrer |sirar replacingPre;ry where Prepry [strat(Z) =
{s|Jar € enableds,I") such that(s,ar) € stratA Va, ar I: a = img(s,a) C Z}, i.e., Preyr[strar(Z) is
Preyr(Z) restricted to states and actions allowedstiyat. Furthermoref. 1% lstrat recurswely callsﬂ.]]go
on sub-formulae, instead ] ..

The Split algorithm is given in Algorithm 2Split(Sx Actr) returns the set of uniform strategies of
the system (a uniform strategy is represented by the actiogrbupl” allowed in each state, and this
action needs to be the same for each state in the same equwalass).

Intuitively, Algorithm 1 computes, for each possible umifostrategystrat, the set of states for which
the strategy is winning, and then keeps only the stafes which the strategy is winning for all states
equivalent tcs.

Before proving the correctness of the basic algorithms lptbve the correctness of tisplit algo-
rithm.
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Algorithm 1: [(F)y]5,

Data: M a given (implicit) model]” a subset of agents M, ¢y anAT LKEO path formula.
Result The set of states dfl satisfying(I") (.

sat={}
for strat € Split(Sx Actr) do
L winning= H<r>’1u]]'f:o’5trat
sat= satU {s € winningVs ~r s,s € winning}
return sat

Algorithm 2: Split(Stratg
Data: StratsC Sx Actr.
Result The set of all the largest subs@&#.of StratsC Sx Act- such that no conflicts appear in
SA

C={(s,ar) € Strat§3(s,ar-) € Strats &. S ~r shar #a}
if C=0then return {Stratg
else

(s,ar) = pick one inC
E = {(s,a}) € Stratgs ~r s}
A= {ar € Act-|3(s,ar) € E}
strats= {}
for ar € Ado

L S={(¢.ar) €Elg = ar}

strats= stratsJ Split(SU (Strats\E))

return strats

Theorem 2. Split(Stratg computes the set of all the largest subsets SA of Str&s Act such that
no conflicts appear in SA.

Remark 1. A conflict appears in SA Sx Actr if there exist two elements,ar) and (s, ar) in SA such
that s ~r s and & # a, i.e. there is a conflict if SA proposes two different actionsvo equivalent
states.

Proof sketch of Theorem 2. Spidiets all the conflicting elements 8trats If there are no such elements,
then Stratsis its own largest non-conflicting subset; otherwiSglit takes one conflicting equivalence
classk and, for each of its largest non-conflicting subs8tsi.e. subsets of states using the same
action—it callsSplit on the rest ofStratsaugmented with the non-conflicting subSet

We can prove the correctnessyblit by induction over the number of conflicting equivalence siass
of Strats If Stratsdoes not contain any conflicting equivalence clasSéstsis its own single largest
subset in which no conflicts appear. Otherwise, let's assilaieS plit(Starts E) with E a conflicting
equivalence class @tratsreturns the set of all the largest non-conflicting subseStrits E; then, by
what has been explained abo@glit returns the cartesian product between all the largest nafiicting
subsets of and all the largest non-conflicting subsetsStfats E. Because these cannot be conflicting
as they belong to different equivalence classes, we carummthatSplit returns the set of the largest
non-conflicting subsets @trats O
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The correctness of Algorithm 1 is then given by the followthgorem.
Theorem 3. [(I) Y], computes the set of states of M satisfyiigy, i.e.

¥se Sse [Nl iff s =po (MY

Proof sketch.First, Split(S x Act-) returns all the possible uniform strategies of the systefmeres a
uniform strategy is represented by the only action allowedach equivalence class of states—states
equivalent in terms of the knowledge Iof—, this action being the same for every state of the class.

Indeed, the set of the largest non-conflicting subse®&>oAct- is the set of possible uniform strate-
gies. A non-conflicting subset &x Act- provides at most one action for each equivalence classteksta
otherwise it would not be non-conflicting; second, a largest-conflicting subset ddx Act- provides
exactly one action for each equivalence class of statesywibe there would be a larger subset giving
one action for the missing equivalence classes and thiesulmsild not be conflicting. Finally, a largest
non-conflicting subset d& x Act- is a uniform strategy because it is exactly the definition ahéorm
strategy: giving one possible action for each equivaletasgsc This thus ends the proof ttgplit returns
the set of all possible uniform strategies.

Secondwinning = '] Lp]]ﬁowystrat returns the set of states for which the stratstpat is winning.
Indeed, it use®\T LKE, model checking algorithm, restricted to actionsstnat. It thus returns the set
of states for which there is a (global) winning strategytirat. As strat is, by construction, a uniform
strategywinningis the set of states for which there exists a uniform winningtegy—in fact, it isstrat
itself.

Finally, the sef{s € winningVs ~r s,s' € winning} is the set of statesfor which strat is a winning
strategy for alls' ~r s. satthus accumulates all the statefor which there is a winning strategy for all
states indistinguishable from As this is exactly the semantics of the property, $&tis exactly the set
of states of the system satisfying the property, the prodbree. O

Improving the basic algorithm The first improvement proposed for the basic algorithm ispires
filtering of states to the ones satisfying the property uiderKF, ; we can filter them because if a state
s does not satisfy" ) underATLKE,, s cannot satisfy(")( underAT LKSO. The second one is the
alternation between filtering and splitting the strategiBeth improvements are aimed at reducing the
number of uniform strategies to consider. The improvedrétlym is presented in Algorithm 3. Using
this algorithm, we can compufél) ¢] Eo aslmproved (I y] I;::>0|5><ACE" The intuition behind Algorithm 3
is to start by computing the set of states satisfying the gntypand the associated actions (line 3), then
get all conflicts (line 3) and, if there are conflicts, choose @onflicting equivalence class of states
and possible actions (lines 3 to 3) and for each possibleraati, recursively call the algorithm with
the strategies followingy (lines 3 and 3)—i.e. split the class into uniform strated@sthis class and
recursively call the algorithm on each strategy.

More in detail, Algorithm 3 returns the set of states saimgfjthe property irStrats So, to get the
final result, we have to take all the states satisfying the@gnty in Sx Act-. Algorithm 3 uses the func-
tion [[.}]'f:’oac\strats. This function is a modification of thg],|strats function where actions are linked to

states. More precisely, every sub—call[[tﬂ)'[:)O or Fairry is enclosed bystatesActiongstrats to get all en-
abled actions in these states, restrictesttats—StatesActionSsyas(Z) = {(S,ar) € strat§se ZAar €
enableds, ") }—, andPre ) |strats IS replaced byDre?§>|strats(Z) ={(s,ar) € stratdar € enableds, ') A
Va,ar Ca — img(sa) C Z}. For example[[IG@]"2|strats = VZ.(StatesActiongstrard [ @] 5o U
Fair[r})) N Pre?% |Strats(z)'
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Algorithm 3: Improved (M) @] 5o/strats

Data: M a given (implicit) model]” a subset of agents M, ¢y anAT LKFF,O path formula,
StratsC Sx Actr.
Result The set of states dfl satisfying(I') g in Strats

1 Z=[(M)]5s lstrats

2 C={(s,ar) € Z|3(s,ar) € Zsuch thas~r S Aar #a}
if C=0then

4 | return {se S3ar € Actr s.t.VS ~r s,(S,ar) € Z}
else

(s,ar) = pick one inC

E={(s,ar)eZ|s~r s}

A= {ar € Actr|3(s,ar) € E}

sat={}

for ar € Ado

11 strat={(s,ar) € Elar =ar }U(Z\E)

12 sat= satU Improved (I) /] Solstrat

L return sat

Intuitively, StatesActionSsirats(Z) returns all the states & with their enabled actions allowed by
stratsand Pre?§>|strats(2) returns the states that can enforce to readh one step, and the actions that

allow them to do so, restricted to actionsstmats [(I) /]2 srarsthus returns the states satisfyitig)
associated to the actions sifratsthat allow them to do so.

The correctness of Algorithm 3 is given by the following them.
Theorem 4. Improvec[(F)LIJ]];F)O]SXAUr computes the set of states of M satisfy{Agy, i.e.

vse Sse Improved (M) W] Folsxac iff s FEho (M.

Proof sketch.First, [(F)Lp]]f;)aﬂs”ats returns the set of statess(and associated actions) such that there
exists a global strategy #tratsallowing " to enforce the property ia This means that if a state/action
pair is not returnedl” has no global strategy to enforce the property from the gstate by using the
action given in the pair. By extension, there is no uniformatsigy to enforce the property neither. Thus,

only state/action pairs returned By ) ¢/] ffﬂsrrats have to be considered when searching for a uniform

strategy inStrats This also means thtl) ] f’c‘f‘c[ strats filters Stratsto winning global strategies; if the

result is also a uniform strategy, all the states in the nettirset have a uniform strategy to enforce the
property.

Second,lmprovec[(F)t,U]]EO|Strats returns the set of states satisfying the propertgtirats We can
prove this by induction on the number of conflicting equivale classes dbtrats this is true if there are
no conflicting classes because Line 3 computes a winningumistrategy—as discussed above—and
Line 3 returns the set of states for which the strategy is impfor all indistinguishable states. This is
also true in the inductive case because (1) filtering Wil @] ’f:f°| stratsdoesn’t lose potential state/action
pairs and (2) the algorithm takes one conflicting class &aed &ll the possibilities for this class.

The final result thus is correct since it returns the set déstfor which there is a uniform strategy
in Sx Actr that is winning for all states equivalent $o O
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Complexity considerations Model checkingAT L with perfect recall and partial observability is an
undecidable problem [14], while model checkiA§ L, is aAS-compIete problem [9]AT LKg0 subsumes
ATL; and its model checking problem is therefdg-hard. Algorithm 1 performs a call tg.]]%, for
each uniform strategy({.]|%, is in P, but in the worst case there could be exponentially mang talihis

procedure, as there could be upnie.r |Act|IS| uniform strategies to consider.

4 Conclusion

A number of studies in the past have investigated the problemodel checking strategies under partial
observability and, separately, some work has providedrititgos for including fairness constraints on
actionsin the case of full observability. To the best of our knowledthe issue of fairness constraints
and partial observability have never been addressed tgeth

In this paper we presentell LKEO, a logic combining partial observability and fairness ¢oaiats
on states(which is the standard approach for temporal and episteogicd), and we have provided a
model checking algorithm.The proposed algorithm is simdahe one of Calta et al. [3]. They also split
possible actions into uniform strategies, but they do novide a way to deal with fairness constraints.

Finally, the structure of our algorithm is compatible wignsbolic model checking using OBDDs,
and we are working on its implementation in the model cheBd@MAS [12], where fairness constraints
are only supported for temporal and epistemic operators.
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We propose a validity preserving translation from a subfepéstemic Alternating-time Temporal
Logic (ATL) to epistemic Computation Tree LogiCTL). The considered subset of episteAiLL is
known to have the finite model property and decidable mobetking. This entails the decidability
of validity but the implied algorithm is unfeasible. Redugithe validity problem to that in a corre-
sponding system oETL makes the techniques for automated deduction for that Egadable for
the handling of the apparently more complex systerATiL.

Introduction

The strategic cooperation modalitiesaifernating time temporal logi€ATL, [AHK97, AHKO02]) gen-
eralize the path quantifier of computation tree logi¢CTL). Combinations oATL with modal logics

of knowledge [vdHWO03, JvdH04] extend temporal logics of wiexlge (cf. e.g [FHMV95]) in the way
ATL extendsCTL Automated deduction fo€TL and linear time epistemic temporal logics has been
studied extensively [FDPO1, BDF99, GS09a, GS09b]. Themuish less work on the topic f&TL, and
hardly any for its epistemic extensions. The decidabilityalidity in ATL with complete information
was established in [GvDO06] as a consequence ofitliie model propertywhere the completeness of a
Hilbert-style proof system was given too. Hilbert-styl®gf systems are known to be unsuitable for au-
tomating proof search. The situation was remedied by adabbased decision procedure developed in
[GS09c]. Along with that, the same authors developed tabdgatems for branching epistemic temporal
logics in [GS09b]. Temporal resolution (cf. e.g. [FDPOMhich is well understood for linear time
logics and their epistemic extensions, was considere@Tarin [Zhal0], but only for the(.))o-subset,
which is similar tocoalition logic[Pau02] and enables only reasoning about a fixed numbers.ste
our knowledge, no similar work has been done for systemsegpis ATL

In this paper we continue the study [GDE11] of a systenA®E with the operator of distributed
knowledge under the perfect recall assumption. In [GDEId patablished the finite model property for
a subset, and a model-checking algorithm for the whole sysihat algorithm assumed that coalition
members can use the distributed knowledge of their coaditim guide their actions. Dropping that
assumption is known to render model-checking undeciddbld ]]. As expected, the validity-checking
algorithm which these results imply is unfeasible.

In this paper we propose a validity preserving translatiomfanother subset of that logic into epis-
temic CTL, with distributed knowledge and perfect recall again. Aseitomes clear below, the need to
consider a subset appears to be due to the lack of connertiepsstemicCTL to capture some interac-
tions between knowledge and the progress of time. The &amisimakes no assumption on coordination
within coalitions and there is no dependence on the avétlabif the past temporal modalities which

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.): © D. P. Guelev
1st Workshop on Strategic Reasoning 2013 (SR’13) This work is licensed under the
EPTCS 112, 2013, pp. 81-89, d0i:10.4204/EPTCS.112.13 Creative Commons Attribution License.
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are featured in the axiomatization from [GDE11]. A semaatisumption that we keepfigite branch-
ing: only finitely many states should be reachable in one stap fray state and models should have
only finitely many initial states. Dropping that assumptwould disable the fixpoint characterization of
(.U.)-objectives that we exploit, because of the requirementmtegjies to be uniform. The translation
enables the use of the known techniques for mechanized proloé apparently simpler logi€TL and

its epistemic extensions [BF99, GS09b]. Building on ounjmes work [GDE11], we work with the
semantics oATL oninterpreted systemia their form adopted in [LROG6].

1 Preliminaries

1.1 Propositional epistemicATL with perfect recall (ATLY)

The syntax oATLR formulas can be given by the BNF
¢, @i=L[pl(¢=u)|Dr¢ (Moo |(MH(¢UyY)|[F](eUy)

Herel ranges over finite sets of agents, gmdanges over propositional variables. In this paper we
exclude the past temporal operators as their presence dbefett the working of our translation.

An interpreted systens defined with respect to some given finite Bet {1,...,N} of agentsand a
set ofpropositional variablegatomic propositionsAP. There is also aenvironment € ; in the sequel
we write X for U {e}.

Definition 1 (interpreted systems) An interpreted systerfor ~ andAP is a tuple of the form
((Lj:1 € Ze),l,(Act 11 € Z¢),t,V) (1)

where:
Li, i € 2, are nonempty sets tdcal statesLr stands for[] Li, [ C 3¢,
iel

elements ot 5, are calledglobal states
| C Ls, is a nonempty set ohitial global states

Act;, i € Z¢, are nonempty sets aictions Actr- stands for[] Act;
iel

t:Ls, x Acts, — Ly, is atransition function;
V C L5, x APis a valuation of the atomic propositions.
For everyi € e andl’,l” € Ly, such that{ = 1" andl} =17 the functiont satisfiest(l’,a)); = (t(1”,a));.

In the literature an interpreted system also includ@soocol to specify the actions which are permit-

ted at every particular state. Protocols are not esseptialit study here as the effect of a prohibited
action can be set to that of some fixed permitted action (wisiethways supposed to exist) to produce
an equivalent system in which all actions are always peeahittOur variant of interpreted systems is
borrowed from [LR0O6] and has a technically convenient fematwhich is not present in other works

[FHMV95, LOR]: every agent’s next local state can be ditgcéiffected by the local state of the envi-

ronment through the transition function. Here follow thehteical notions that are relevant to satisfaction
of ATL formulas on interpreted systems.

Definition 2 (global runs and local runs) Given ann < w, arun of length nis a sequence

r= |Oa0|10a1 € Lze(ACtzeLze)n
such that® e | andli+1 =t(IJ,al) for all j < n. A run isinfinite, if n= w; otherwise it isfinite. In either
case we writgr| for thelength nof r. (Note that a run of length < w is indeed a sequence of2 1
states and actions.)
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Givenr as above anéi C %, we writer for the correspondingpcal run
IPa,Q . a?‘llP S Lr(ACtrLr)n
of M inwhichl! = (I} :i e ) andal = (al ;i eT).
We denote the set of all runs of some fixed length w, the set of all finite runs, and the set of all

runs inlS by R'(1S), R™(I1S) andR(1S), respectively. S
Giveni, j < wand anr as above such thak j < |r|, we writer[i..j] for I'a'...al "1,

Definition 3 (indiscernibility) Givenr’,r” € R(IS) andi < |r'[,[r"|, we writer’ ~r; r” if r'[0..i]r =
r[0..i]r. We writer’ ~r r” for the conjunction of’ ~ ./ r" and|r'| = |r"|.

Sequences of the formy consist of()s, and, consequently;]p is the class of all the runs of length.
Obviously~r , and~r are equivalence relations &t{lS).

Definition 4 We denote{r’ € R(IS) : t’ ~r r} by [r]r.

Definition 5 (coalition strategies) A strategyfor ' C X is a vectors = (s : i € I') of functionss of

type {ri : 1 € R™"(1S)} — Act. We write (T, 1S) for the set of all the strategies forin the considered

interpreted systens. Givens € ST, 1S) andr € R™"(1S), we write outr, s) for the set
{r=19%°...a"1"... e R°(IS) : r'[0..|r|] = r,a =s(r[0..j]r) foralli e I andj > |r|}.

of the outcomef r whenr sticks tos from step|r| on. Given arX C R™"(1S), out(X,s) is |J out(r,s).
rex

Strategies, as defined above, are determined by the lowesd witthe considered coalition members and
are thereforainiform

Definition 6 (modelling relation of ATLR) The relationlS,r |= ¢ is defined for € R™"(1S) and formu-
las ¢ by the clauses:

IS;r b~ L;

1S,1080...a" "= p iff V(1" p) for atomic propositiong;
ISTE¢ =y iff eitherIS;r = ¢ orIS;r = y;

IS,r |=Dr¢ iff 1S,r'=¢forallr’ € r]r;

ISrE ()o@ iff there exists arse S(I',1S) such that

IS,r'[0..]r] +1] = ¢ for all r’ € out([r]r,s);
IS;r = (M) (pUy) iff there exists arse SI,1S) s. t. for everyr’ € out([r]r,s) there exists
ak<ws. t.ISr'[0..|r]+i] = ¢ for alli < kandIS,r’[0..|r] + K] = ¢;
ISr = [F](¢Uy) iff for everyse ST,1S) there exist am’ € out([r]r,s) and ak < w s. t.
IS,r'[0..]r| +i] = ¢ foralli < kandIS,r'[0..]r|+K| E .
Validity of formulas in entire interpreted systems and oa tfass of all interpreted systems, that is, in
the logicATLR, is defined as satisfaction at all 0-length runs in the camsidlinterpreted system, and at
all the 0-length runs in all the systems in the consideresis¢laspectively.

In this paper we assume that each coalition member usesterdwin observation power in following a
coalition strategy. Allowing coalition members to shareittobservations gives rise to a more general
form of strategy, which are functions of tyder : r € R™"(1S)} — Act-, and which was assumed by the
model-checkig algorithm proposed in [GDE11].
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Abbreviations

T, -, V, A and< have their usual meanings. To keep the usé afid) down, we assume that unary
connectives bind the strongest, the binary modalitiep (.U.) and[['](.U.), and the derived ones below,
bind the weakest, and their parentheses are never omitiddha binary boolean connectives come in
the middle, in decreasing order of their binding power atofed: A, v, = and<. We enumerate
coalitions without the{ and}. E.g., the shortest way to writ¢{1}))(((p = 0) AP{3;r)UD23,(r vQ)))

is (1)) ((p=q) AP1rUD23(r v q)). We writeP for the dual ofD:

Pr¢ = -Dr—¢.
The rest of the combinations of the cooperation modalityfatute temporal connectives are defined by
the clauses
(THoe =(MH(TUs) (M)Bd =~[T]O~¢ (M) (@WY) = ~[T(-PU-PAr-9¢)
[Fjoe =[r](Tu¢)  [F]o¢ =—(r)o=¢ [F(eWY) = =(T) (YU~ -p)

1.2 ATL!% with epistemic objectives only

In [GDE11] we axiomatized a subset AL with past in which((.))(.U.) was allowed only in the
derived construct(l"))>Dr ¢, and[.](.U.) was allowed only in the derived constru¢f))O0¢. Because
of the validity of the equivalences

(F)o¢ < (M) oDr¢ and((M)0¢ < (F)TDr¢,
that entailed that all the objectives allowed in that sulgate epistemic. We argued that, under some
assumptions, ang(.))(.U.) formula could be transformed into an equivalent one of tmenf@I")) >Dr ¢
thus asserting the significance of the considered subsdh tBe axiomatization and the reduction to
epistemic goals relied on the presence of the past operatotisis paper we consider another subset of
ATLE. Its formulas have the syntax

¢ @wi=L[p|(¢=u)|Dr¢|(M)od|(r)(DréUDry) )
Unlike the subset from [GDE11], here we allow formulas of thiem ((I')) (Dr¢ UDr ). However, we
exclude even the special ca&€))0¢ of the use of[[](Pr¢ UPry). The reasons are discussed in the
end of Section 2.

1.3 CTLwith distributed knowledge

This is the target logic of our translation. Its formulas é#ve syntax

¢, @pu=_L[p|(¢=1)|Dr¢[Iod|3(Uy)|V(9Uy)
wherel” ranges over finite sets of agents as above. The clauses feet@ntics of the connectives in
common withATLR are as inATLR; the clauses about formulas built usiB@ndY are as follows:
IS,;ri=30¢ iff there exists an’ € R"*%(1S) such thar = r'[0..|r|] andIS,I’ |= ¢;
ISr=3(¢Uy) iff there exists an’ € R®(1S) such that =r’[0..]r|] and ak < w
such thatS;r’[0..|r] +1] = ¢ for all i < kandIS,r'[0..|r| + K| = y;
ISr =V(¢pUy) iff foreveryr’ € R®(IS) such thar =r’[0..|r|] there exists & < w such that
IS,r'[0..[r|+i] = ¢ for all i < kandIS,r'[0..r|+ K| = .
Note that the the occurrencesof is vital for the validity of the equivalences

Podo¢ < [0]c ¢, Pe3(¢Uy) < [0](¢Uy) andDeV(dUy) < ((0))(¢UY).



D. P. Guelev 85

in the combined language ALY andCTL because of the requirement on strategies to be uniform; e.g.
{((0)) (¢ Uy) means thatg Uy) holds along all the extensions of all the rumisich are indiscernible from
the reference run to the empty coalitiohherefore heré(0)) does not subsumein the straightforward
way known about the cageTL of complete information.

The combinatiorvo and the combinations &f andV with the derived temporal connectivesV.),
< andO are defined in the usual way.

2 A validity preserving translation into CTL~+ D with perfect recall

Our translation captures the subsefAdil which is given by the BNF

¢, @:=L[pl(d=u)|cd|(¢SY)[Dro[{r)od | () (DréUdry)

We explain how to eliminate occurrences(0f) in formulas of the form{(I")) (Dr ¢ UDr ¢) first. In the
sequel we writda / p] B for the substitution of the occurrences of atomic proposip in 8 by a.

Proposition 7 Assuming that p and q are fresh atomic propositions, thesfatiility of
[((T))(DreUDry)/plx (at a0-length run) is equivalent to the satisfiability of

X A D@VD(D\/Q# Drlll\/(Dr(IJ/\<<r>>oq))
A DoVO(p< Dry vV (Dro A((T) op)) (3)
A DevO(p= DryV (Dr¢ AVoV¥(q= DréUq= Dry))).

Next we explain how to eliminate occurrences of the "basitL construct(l")) o ¢. Let|Sstand for
some arbitrary interpreted system (1) with finite branchimigh ~ = {1,...,N} as its set of agent#$\P
as its vocabulary. We adapt the following simple observatiohich works in caséct, i € X are fixed.
Readers who are familiar with the original semanticsA@L on alternating transition system@T9
from [AHK97] will recognize the similarity of our techniqueith the transformation otoncurrent
game structuremto equivalentATSfrom [GJ04]. Assuming thaAct, i € 3, are pairwise disjoint, and
disjoint with AP, we consider the vocabuladP*®t = APU U Act.

€3¢

Definition 8 GivenlSandx ¢ |J Act, we define the interpreted system

i€2e
ISA = (L1 € Se), 1A (Ack 1 € Ze) 1A% VAT
by putting:
LAct = Lix(ActU{*}), i€
| Act = {{{li,%):ieZ):lell;
A% ((li,a) T €Ze),b) = (((t(1,b))i,by) i € Ze);

VAY(({li,ai) 11 € Ze),p) ¢ V((li,:i € Ze), p) for pe AP;
VAL ((li,a) 11 € Ze),b) < b=ajforbeAct, j€Ze.

In short, an S*°t state is anlS state augmented with a record of the actions which lead thatdummy
symbolx being used in initial states. L&C LéeCtx Lg\gt andR(((li,a) :1 € Ze), ((Vi,by) 11 € Z¢)) iff v=
tA%(1,b). ThenISAUr = 3o ¢ iff 1S ral’ = ¢ for somel’ € R(l) and the onlya € Acts, such that
ral’ € RN(ISA%Y). The key observation in our approach is that

k
|S,r):<<i1,...,ik>>0¢iﬂ: ISACtJACt’: \/ \/ D{i1 ..... ik}v0</\ aij :>¢> (4)

a EAct, &, EAct, j=1
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For this observation to work without refering to the actigmghe particular interpreted system, given
an arbitrarylS, we enrich it with dedicated actions which are linked to th@otives occurring in the
considered formula. We define the transition function osétections so that if a particulag-objective
can be achieved at finite rurat all, then it can be achieved by taking the correspondilicdéed actions
at the last state af This can be achieved in forest-like systems where runs eatetermined from their
final states. Similarly, we introduce express actions ferghvironment that enable it to foil objectives at
states at which they objectives cannot be achieved by tipectige coalitions using any strategy based
on the original actions. (Giving the environment such p@xes not affect the satisfaction of formulas
as it never participates in coalitions.) The satg, i € Z¢ of atomic propositions by which we model
actions satisfy the formula

A(Act,....Acv,Act)= A ... A A 3o Aa,

ajeActy anEACty ageACt: i€2e

which states that any vector of actions fraéuats, produces a transition. Consider AfLR formula of
the form below with no occurrences @b.)-objectives:

X N DoVOA(Act,...,Acty,Acte) (5)

Here Act, ..., Acly,Acte consist of the atomic propositions which have been intreduto eliminate
(")) o ¢-subformulas so far. For the origingl we assume\ct = {nop;}, i € Ze, wherenop; have no
specified effect. We remove the occurrence§of) o ¢-subformulas irx working bottom-up as follows.

Proposition 9 Letar iy, i € T U{e}, be fresh atomic propositions, Aet Act U {ar ¢} fori e U{e}
and Act = Act for i € Z\ . Then the satisfiability of

[((T)) o @/plx A DoVOA(Acty,..., Act, ACt) (6)
entails the satisfiability of the formula

e (oo =#) o)1

Do (Dr\fo (.A arie = ¢) VPFYo (ar ag = ﬂ¢>) A

el

DoVOA(Acty, ..., Acty,Act,).

()

The above proposition shows how to eliminate one by one albtiturrences of the cooperation modal-
ities in an any giverATLR formula x with the cooperation modalities appearing only in subfdesuwf

the form((I")) o ¢ and obtain a&CTL+ D formula x’ such that ify is satisfiable, then so jg’. Now con-
sider a purely€TL+ D formula of the form (5). The satisfaction of (5) requirestjagransition relation

for the passage of time to define as it containg({ig)s and hence no reference to actions. That is, we
assume a satisfying model of the form

IS~ = ((Li :i € Ze),1,—,V) (8)

whereL;, i € Zg, | andV are as in interpreted systems, ands a serial binary relation on the set of
the global states s, that represents the passage of time. We define the remaintieigprieted system
components as follows. We choose the set of actions of eaatt agncluding the environment, to be
the corresponding set of atomic propositigkes; from (5). For anya € Acts, and anyl € Ly, we choose

t(l,a) to be an arbitrary member of(1)n N {I’ € Ly, : V(I’,&)}. The nonemptiness of the latter set is
ieZe
guaranteed by the validity @f(Act, ..., Acty,Act) in IS, which states that every state has a successor
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satisfying the conjunction/ & for any given vector of actiona € Acts,. Let|S stand for the system

i€Ze
obtained by this definition ofct, i € Z¢, andt. It remains to show that
IS r ):Drvo (/\ ar,i,¢ :>¢> (9)
iel

is equivalent tdS,r = ((I")) o ¢ for any subformula(l")) o ¢ eliminated in the process of obtaining (5).
For the forward direction, establishing that the actiansy, i € I' providesl” with a strategy to achiewg

in one step is easily done by a direct check. For the conversetidn, if (9) is false, then the validity of
the second conjunctive member of (7) entails thaannot rule out the possibility that the environment
can enforce-¢ in one step by choosing its corresponding actipg .

Formulas of the form [[[]|(Pr¢ UPry)

We first note that no restriction on formulas of the respeativore general forfil |(¢ Uy) is necessary
in the case of complete information.

Proposition 10 (eliminating [I'] (¢ Uy) in ATLwith complete information) Let p and q be some fresh
atomic propositions. The satisfiability of

[[FT(¢Uw)/plx

in ATL with complete information is equivalent to the sadlsifity of

X A VO(pva= @V (pA[l]eq))
A VO(pe@V(eA[TTeop) (10)
A VO(p=yYV(pAVoV(g= dUq= 1))).

In the incomplete information case our approach suggegtaaieg[[I'](Pr¢UPry)/plx by

X AN DovO(pva= Pryv (Pro Alloq))
A Do¥O(p< PryyV (Pré A op))
A DovO(p=PryV (Pro A...)).

where, in a forest-like systeh$, g is supposed to mark states which are reached frommrima/hich I
cannot achievéPr¢ UPry) whenl’s actionsa are complemented on behalf of the non-members of
by some action§,, (, that foil the objective, and.. is supposed to express that any sequence of vectors
of actionsay,ay,... € Act- when complemented by the corresponding;,, ba,r,,... can generate a
sequence,ra,... of finite runs, starting with the reference one, each of theimdl -indiscernible
from the extension of the previous one, by the outcome ofebpeactivea - b,, r,, such that there exists a
k<wwithIS,rj =qADr¢, j=1,...,k—1, andIS,r¢ = —~qV Dr . The fixpoint construct that would
best serve expressing this condition can be writtemXasx \V (8 A PrV o X) in the modalu-calculus (cf.

e.g. [BS06]). Finding a substitute for it @TL+ D appears problematic.

Concluding remarks

Our approach is inspired by temporal resolution [FDPO1]iclwthas been extended to episterhitL
[DFW98] and to (non-epistemic¥ TL andCTL" [BF99, BDF99], the latter system being the closest to
our target systenCTL+ D. Following the example of these works, a resolution systenCiTL+ D
could be proved complete by showing how to reproduce in it@opf in some complete, e.g., Hilbert
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style proof system. A complete axiomatization for epise@TL* with perfect recall can be found in
[vdMKO3], but the completeness was demonstrated with dpehe so-calletbundlesemantics, where
a model may consist of some set of runs that need not be alutiegenerated by a transition system.
and the form of collective knowledge considered in [vdMK@3¢ommon knowledgevhereas we have
distributed knowledge. The setting for the complexity Hssirtom [HV86] is similar. The tableau-based
decision procedure for epistem@TL with both common and distributed knowledge from [GS09b]sdoe
not cover the case of perfect recall. To the best of our kndgdeno decision procedure of feasible
complexity such as the resolution- and tableau-based batate available for so many closely related
systems from the above works has been developed yet foityatdCTL+ D with perfect recall.
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This article is about temporal multi-agent logics. Severfathese formalisms have been already
presented (ATL-ATL*, ATLs., SL). They enable to express the capabilities of agents ys&s to
ensure the satisfaction of temporal properties. Partigl&L and ATLg; enable several agents to
interact in a context mixing the different strategies th&aypn a semantical game. We generalize
this possibility by proposing a new formalism, Updatingg®gy Logic (USL). In USL, an agent can
also refine its own strategy. The gain in expressive powes tise notion ofustainable capabilities
for agents.

USL is built from SL. It mainly brings to SL the two following adlifications: semantically, the
successor of a given state is not uniquely determined by &it@ af one choice from each agent.
Syntactically, we introduce in the language an operatdled@anunbinder which explicitly deletes
the binding of a strategy to an agent. We show that USL istlstricore expressive than SL.

1 Introduction

Multi-agent logics are receiving growing interest in canpwrary research. Since the seminal work of
Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman [2§ orajor and recent direction (ATL with
Strategy Context [3, 6, 7], Strategy Logic (presented finsis] and then extended in [8, 10]) aims at
contextualizing the statements of capabilities of agents.

Basically, multi-agent logics enable assertions aboutctgability of agents to ensure temporal
properties. Thus, ATL-ATL [2] appears as a generalization of CTL-CTIn which the path quantifiers
E andA are replaced bgtrategy quantifiersStrategy quantifiers (the existentigh)) and the universal
[A]) have a (coalition of) agent(s) as parameték)) ¢ means that agents Acan act so as to ensure the
satisfaction of temporal formul@. It is interpreted irConcurrent Game Structurd€GS), where agents
can make choices influencing the execution in the systemmudar((A)) ¢ is true if agents irA have a
strategy so that if playing it they force the execution tasfatp, whatever the other agents do.

A natural question is: how to interpret the imbrication ofexal quantifiers? Precisely, in the inter-
pretation of such formula as

= () D(¢1 A ((82))Dg2)

(whered¢ is the temporal operator meanitpgs always true, and; anda, are agents), is the evaluation
of ¢, made in a context that takes into account both the strateggtified in ((a1)) and the strategy
quantified in{(az))?

In ATL-ATL *, only &, is bound: subformuld(ay))C¢, is true iff a, may ensurél¢,, whatever the
other agents do. Thefay)) stands for three successive operations: First, each agenbound from its
current strategy, then an existential quantification is erfad strategyo. At last,a, is bound to strategy
0.

ATL s [3, 6, 7], while keeping the ATL syntax, adapts the semanticader to interpret formulas in
a context which stores strategies introduced by earlientifiexs.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13) © Ch. Chareton, J. Brunel & D. Chemouil
EPTCS 112, 2013, pp. 91-98, doi:10.4204/EPTCS.112.14
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Strategy LogidSL [8,10]) is another interesting proposition, which liguishes between the quan-
tifications over strategies and their bindings to agentse dperator((a)) is split into two different
operators: a quantifier over strategi@x)f, wherex is a strategy variable) and a bindéa,x), wherea
is an agent) that stores into a context the informationahmdys along the strategy instantiating variable
X (let us write itay in the remaining of this paper).The ATL formula syntactically matches the SL:

W2 1= (%)) (a1, X1 ) (@1 A ((X2)) (82, %2) LI P2)

In ¢», when evaluatingJ¢,, a; remains bound to strategy, except ifa; anday are the same agent. If
they are the same, the bindeg,x2) unbindsa from its current strategies before binding heotg.

In this paper we present USL, a logic obtained from SL by mgkixplicit the unbinding of strategies
and allowing new bindings without previous unbinding. Hoatf we introduce an explicit unbinder
(a % x) in the syntax (and the binder in USL is writtéa > x)) and we interpret USL in models where
the choices of agents are represented by the set of potemtieéssors they enable from the current state.
When there is no occurrence of an unbinder, each agent rerhaimd to her current strategies. Then
different strategies can combine together even for a simgémst, provided that they aceherent which
means they define choices in non-empty intersection (thema formally defined in Sect. 2).

The main interest in such introduction is to distinguishwestn cases where an agent composes
strategies together and situations where she revokesentstrategy for playing an other onealfand
ap are the same agents, them is written in SL:

W3 := (1)) (&, x1)O(P1 A ((%2)) (&, %2)D2),

which syntactically matches the USL.:

Wa = ((x1)) (@ x1)U(P1 A ((X2)) (@ > X2)2)

In g, subformula{(xy)) (a, x2) ¢, states thah can adopt a new strategy that ensurks, no matter
if it is coherent with the strategyy, previously adopted. Igi,, both strategies must combine coherently
together. In natural languagp, states thah can ensurep; and leave open the possibility to ensyre
in addition. The equivalent afiz in USL is actually noty, but

Ys = ((x1)) (@t x))O(P1 A (x2)) (@ 1 xa) (@ D> X2)L12)

There indeed, in subformul@ i x1)(a> x2)0@o, ais first unbound fronoy, and then bound tos, .
A consequence of considering these compositions of stestégthe expressiveness sfstainable
capabilitiesof agents. Let us now consider the USL formula:

We = ((xa)) (@ > x1)O(((%2)) (@t x1)(ar> x2)X p)

There the bindefa > x;) is used with the unbindgl (% x1), so thatys is equivalent to the SL:

Yr = ((xa)) (8, x1)B({(x2) (8, %2)X )

It states that can remain capable to perform the condition expressed Imwhen she wants. But in
case she actually performs it, the formula satisfactiors ame require that she is still capable to perform
it. The statement holds in stasg in structure.#; with single agent.. See Fig.1, where choices are
defined by the set of transitions they enable. Singeinterprets SL formulas with only ageaf the
choices fora are deterministic: les,s' be two states and a choice, then the transition frosto s’ is
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G (%) )
Figure 1: Structurez;

labelled withc iff {S'} is a choice fora ats. Indeed, by always playing choiag, a remains in statey,
where she can change her mind to engurBut if she chooses to reagh she can do it only by moving
to states; and then to stats,. Doing so, she loses her capability to enskr@ at any time. The only
way for her to maintain her capability to reaphs to always avoid it, her capability is not sustainable.

A more game theoretical view is to consider strategies agwitments. In such view, by adopting
a strategya adopts a behavior that holds in the following executiongass it is not explicitly deleted.
Formula

P = ((x1))(a>x1))0(((x2))(@1> %2) X p)

is the counterpart of formulds; with such interpretation of composing strategies for alsimgent. If
a playsoy,, it must be coherently witlwy,. Thus, s is false in structure#;, sincea cannot achieve
more than once.

Formula g distinguishes between structureg; and.#> from Fig.2 ( Note that in this second
structure the choices are not deterministic: from a givatesh choice may be compatible with several
potential successors). 5, g is true atsy since the strategglways play ¢ ensure the execution to
remain in statexy or s; and is always coherent with strateghay & first and then always play;¢cwhich
ensuresX p from statessy ands;. What is at stake with it is the difference betwesrstainable capa-
bilities andone shot capabilitiesFormulasyr; and g both formalize the natural language proposition
can always achieve.One shot capabilityyf;) means she can achieve it once for all and choose when.
Sustainable capability/g) means she can achieve it and choose when without affectinpsing this
capability for the future.

C1,C2

C1,C €1.C2,C3
C3

C1,C

Figure 2: Structurez>

In Sect.3, we compare the expressive power of SL and USL bpfusemula (g, obtained fromy,
by adding toa the sustainable capability to ensute-p:

Yo := (X)) (@a>x)D({(X0)) (21> X0)X PA ((x0))(a> X)X —p)

Yy states thah has sustainable capability to decide whetpar —p holds at next state. We say that
hassustainablecontrol on propertyp: she is sustainably capable to decide the truth valye of

The main purposes of USL are to give a formalism for the coiitipasof strategies and to unify
it with the classical branching-time mechanisms of styategyocation. So, both treatments can be
combined in a single formalism. In the remaining of this pape define USL syntax and semantics, and
we introduce the comparison of its expressive power withdh&L.
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2 Syntax and semantics

In this section we present the syntax and semantics of USjether with the related definitions they
require. The USL formulas distinguish betwgeath andstateformulas.

Definition 1. Let Ag be a set of agents, At a set of propositions and X a setiables, USL (AgAt, X)
is given by the following grammar:

e State formulasp =:=p| @ [d AP | (X)) | (A>X)Y | (A¥ XY
e Path formulas:y:=¢ | -¢ |YAY|YUY| XY
where pe At AC Ag,x € X.

These formulas hold a notion &kevariable that is similar to that in [8, 10]: an atom has an gmpt
set of free variables, a binder adds a free variable to thefdete variables of its direct subformula
and a quantifier deletes it. Upon formulas on this grammasetthat can be evaluated with no context
are thesentencesThey are formulas with empty set of free variables, whictanseeach of their bound
variables is previously quantified. We now come to the dédimét for USL semantics.

Definition 2. A Non-deterministic Alternating Transition System (NAT® a tuple
A = (Ag,M,At,v,Ch) where:

e M is a set of states, called the domain of the NATS, At is thef sgbmic propositions and v is a
valuation function, from M ta? (At).

e Ch: AgxM — Z(Z(M)) is a choice function mapping a pgiagent state) to a non-empty family
of choices of possible next states. It is such that for evatg s€ M and for every agents;aand
ap in Ag, for every ¢ € Ch(az,s) and ¢ € Ch(az,s),cy N ¢y # 0.

We call a finite sequence of statesihatrack 7. The last element of a traakis denoted byast(7).
The set of tracks that are possible#i is denoted byrack , : T = s9S1 ... S € track 4 iff for everyi <k,
for everya € Ag, there isc, € #(M) s.t.c, € Ch(a,s) ands;1 € ca. Similarly, an infinite sequence of
states such that all its prefixes ardriack , is called apath(in .Z).

Definition 3 (Strategies and coherencd strategyis a functiono from Agx track , to £2(M) such that
forall (a,7) € Agxtrack »,0(a, 1) € Ch(a,last(t)). By extension, we writg(A, T) for ,ca0(a, T) for
every AC Ag. Two strategies; and g, are coherentff for all (a, ) in Agx track ,,01(a, T)N02(a, T) #
0. In this case, we also say thei(a, T) and 0»(a, T) are coherent choices

A commitmenk is a finite sequence upd” (Ag) x X), representing the active bindings. Assign-
menta is a partial function fronX to Strat A contexty is a pair of an assignment and a commitment.
Note that an agent can appear several times in a commitmarnthefmore commitments store the or-
der in which pairs(A,x) are introduced. Therefore our notion of contexts diffesrfrthe notion of
assignmentshat is used in SL [8, 10].

A context defines a function fromnack , to 22(M). We use the same notation for the context itself
and its induced function. Le¢p be the empty sequence upo®’ (Ag) x X), then:

e (0,Kp)(T) =M

o (@.(AX)(1) =
— Nacad(X)(a,7) if A#D
— elseM

o (0, (AX)(T) =
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— (a,K)(1)N(a,(A,x))(1) if this intersection is not empty.
— otherwise (which means the context induces contradictbojces),(a,k)(T) .

Now we can define the outcomes of a contexbut (x): let m= m, 14, ... be an infinite sequence over
M, thenrt € out(s, x) iff mis a path in#, s= mp and for everyn e N, 14,11 € X(Tp. .. Th).

Definition 4 (Strategy and assignment translatiohpt o be a strategy and be a track. Themw?' is the
strategy s.t. for every’ e track , , o'(1') = o(11’). The notion is extended to an assignment: for every
a,a’ is the assignment with domain equal to thatrodnd s.t. for every x doma),a’™(x) = (a(x))’

We also define the following transformations of commitmemtd assignments. Given a commitment
K, coalitionsA andB, a strategy variablg, an assignment and a strategy:
e KIA=X =k -(A>X)
e ((B,X)-K)[A— X = (B\AX)-(K[A - X]) andkp[A - X] = Kp
e o[Xx— o] is the assignment with domaitom(a) U {x} s.t.Vy e doma)\{x},a[x — a](y) = a(y)
anda[x— o](x) =0
Definition 5 (Satisfaction relation)Let .#Z be a NATS, then for every assignmentcommitmeni,
state s and pathr.
e State formulas:
— M ,a,K,s= piff pe v(s), with pe At
- M ,d,K,sk=¢ iffitis not true that 7, o, k,s = ¢
- %707’(’3’: ¢1/\¢2 iff %,U,K,S): ¢1 and%,a,K,S’: ¢2
— M ,a,K,s= (X)) ¢ iff there is a strategy € Strat s.t.Z,a[x — 0],K,SE= ¢
— M ,a,K,s= (A x)¢ iff for everymin out(a,k[A— X)), #,a,K[A— X, TE ¢
— M,0,K,s= (A x)¢ iff for all min out(a,k[A-» X)), #Z,d,KIA—» X, TTE= ¢
e Path formulas :
-, a,K,TE= ¢ iff #,0,k, 15 = ¢, for every state formulg
— A ,a,K, T~y iff itis not true that. 7, o, k, TE= Y
- ‘%707’(1”): YL AUk iff %,G,K,T[’: Y1 and%vavKﬂT): 1)
— MoK, =X Yiff #,a™ k, Tt = .
— M,0,K,TT= U ¢ iff there is i€ N s.t. M, T k= (), and for every0 < | <
i7%7 arb.”n-j717 K7 T[J ’: Lljl
Let ap be the unique assignment with empty domain. d.éte a sentence in US{Ag,At,X). Then
.//78): ¢ iff ///,G@,K@ }: ¢
Let us give the following comment over these definitions:€eery contexi = (a, k), the definition
of out (x) ensures that the different binders encodedyinsompose their choices togethas far as
possible In case two contradictory choices from an agent are encodéte context, the priority is
given to the first binding that was introduced in this con{gixé left most binding in the formula). This
guarantees that a formula requiring the composition of rdradictory strategies is false. For example,
suppose thaf(x1))(a > x1)$1 and ((X2))(a > x2) ¢ are both true in a state of a model, and suppose that
strategiesoy, and oy, necessarily rely on contradictory choicesaofthis means thaa cannot play in a
way that ensures botpy and¢y). Then,((x1))(a> X1) (91 A ((X2)) (a> X2)$2) is false in the same state of
the same model. If the priority was given to the most recemdlibg (right most binding in the formula),
the strategyoy, would be revoked and the formula would be satisfied.
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3 Comparison with SL [8, 10]

SL syntax can be basically described from SL by deleting #& af the unbinder. Furthermore, the
binders are limited to sole agents and are writterx) instead of(a > x). USL appears to be more
expressive than SL [8, 10]. More precisely, SL can be emtdd&SL, while g is not expressible
in SL, even by extending its semantics to non-deterministadels. Here we give the three related
propositions. By lack of space, the proofs are only sketdhetthis article. Detailed proofs of these
propositions can be found in [4]. Note that, since SL is 8yrimore expressive than AT [6], the
following results also hold for comparing USL with ATL

Proposition 1. There is an embedding of SL into USL.

Proof (Sketch).The embedding consists in a parallel transformation fronm®Hdels and formulas to that
of USL. The transformation preserves the satisfactiortiozla The differences between SL and USL
lie both in the definition of strategies in SL semantics ardifference of interpretation for the binding
operator. The first is treated by defining an internal tramsédion for SL. By this transformation, the
constraints of agents playing the same choices, issued$toactions framework, are expressed in the
syntax. Then we define a new operator in USL that is equivadeBL binding, and show the equivalence:
the operatofa > x| is an abbreviation for a bindéa > x) preceded by the set of unbind€esi* x;), one

for every variable in the language. O

Proposition 2. A model is saiddeterministicif the successor of a state is uniquely determined by one
choice for every agent. Then, sustainable control is notesgible over deterministic models, neither in
SL nor in USL.

Proof (Sketch).One checks that for every deterministic NAT&, for any states of .#Z, . ,sF¥ yq.
Proposition 1 then straightly brings proposition 2 O

Proposition 3. Sustainable control is not expressible in SL interpretegr NATSs.

Proof (Sketch).The proof uses a generalization of SL semantics dI&TSs Its definition is in [4] and
holds, for example, the following cases:

o ./ ,0,K,Sl=nats X ¢ iff for every me out(s, (a,K)),.#,a™, K, Enars ¢

o ./ ,0,K, T [=naTs $1 U ¢ iff for every me out_(s,(or,K)), there isi € N s.t. ., a1 k. 11
=nats ¢2 and for all 0< j <i,.#,a™ 71 Kk, 10 |=nats @1.

o /,a,K,sk=nats (X))@ iff there is a strategy € Strats.t..#,a[x — 0],K,S=Nars ¢.-
o %7U7Kas}:NATS (a7x)¢ iff %JX,K[X\K(&)],S ':NATS ¢

wherek [x\k (a)] designates the context obtained franby replacing everya,y) in it by (a,x).
Formulayg states thah can always control whethgy or not. Suppose there is a formupain SL
equivalent tayg and let us calexistentiala formula in SL in which every occurrence @K)) is under an
even number of quantifiers. §f is existential then under binary trees it is equivalent toranfila in>}
(the fragment of second order logic with only existentidlgeantifiers).
We now consider a set of formuld§; }icx, each one stating thatcan choosétimes betweerp and
—p. The se{l; }icn is defined by induction over

o o= (X)) (@, x)0({(x0)) (a X)X pA (X)) (2, %)X —p)
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o foralli e N,li+1=Ti[pADO((X+1)) (@ X%+1)X PA (Xi+1)) (& X+1)X =p\p]
[FPAD(X+1) (& %i+2)X PA (%i21)) (& Xi+1)X =p)\=p].

where the notatior9; [6,\ 65] designates the formula obtained frdn by replacing any occurrence of
subformula6s in it by 6. {I;}icn is equivalent top. A compactness argument shows that it is not
equivalent to a formula i} under binary trees, hendeis not an existential formula. Then, we notice
that ¢ is true in structures where, from any stadesan ensure any labelling of sequences quego, if

¢ has a subformuléa, x) ¢y wherex is universally quantifiedy must be equivalent tal(pV —p). Then,

by iteration,¢ is equivalent to an existential formula in SL. Hence a caibtzon. O

4 Conclusion

In this article we defined a strategy logic with updatablatsgies. By updating a strategy, agents remain
playing along it but add further precision to their choiceshis mechanism enables to express such
properties as sustainable capability and sustainableatoifit the best of our knowledge, this is the first
proposition for expressing such properties. Especidily,cdomparison introduced with SL in this article
could be adapted to ATL with Strategy Context [3].

The revocation of strategies is also questioned in [1]. Thas propose a formalism with definitive
strategies, that completely determine the behaviour aitagd@hey also underline the difference between
these strategies and revocable strategies in the classics¢. We believe that updatable strategies offer
a synthesis between both views: updatable strategies canotiéied without being revoked.

Strategies in USL can also be explicitly revoked. This idealieady present in [3] with the operator
-)A(-. But the operatof-A-) also implicitly unbinds current strategy for agentAibefore binding them
a new strategy. Thus it prevents agents from updating ttreitegly or composing several strategies.

Further study perspectives about USL mainly concern thestradbcking. Further work will provide
it with a proof of non elementary decidability, adapted fréme proof in [10]. We are also working
on a semantics for USL under memory-less strategiesRaRACE algorithm for its model-checking.
Satisfiability problem should also be addressed. Since SLiBablem is not decidable, similar result is
expectable for USL. Nevertheless, decidable fragmentsSaf kday be studied in the future, in particular
by following the directions given in [9].
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This paper is an expository contribution reporting on pshsid work. It focuses on an approach fol-
lowed in the rewriting community to formalize the concepstitegy. Based on rewriting concepts,
several definitions of strategy are reviewed and conneateatrder to catch the higher-order nature
of strategies, a strategy is defined as a proof term expréssled rewriting logic or in the rewriting
calculus; to address in a coherent way deduction and cotipta strategy is seen as a subset of
derivations; and to recover the definition of strategy inusgtdial path-building games or in functional
programs, a strategy is considered as a partial functidragsmciates to a reduction-in-progress, the
possible next steps in the reduction sequence.

1 Introduction

Strategies frequently occur in automated deduction arsbreéag systems and more generally are used
to express complex designs for control in modeling, proafa® program transformation, SAT solving
or security policies. In these domains, deterministic-hdsed computations or deductions are often not
sufficient to capture complex computations or proof develepts. A formal mechanism is needed, for
instance, to sequentialize the search for different smisti to check context conditions, to request user
input to instantiate variables, to process subgoals in ticp&ar order, etc. This is the place where the
notion of strategy comes in.

This paper deliberately focuses on an approach followebarréwriting community to formalize a
notion of strategy relying on rewriting logic [17] and retimg calculus [7] that are powerful formalisms
to express and study uniformly computations and deductioastomated deduction and reasoning sys-
tems. Briefly speaking, rules describe local transfornmatiand strategies describe the control of rule
application. Most often, it is useful to distinguish betweeles for computations, where a unique normal
form is required and where the strategy is fixed, and rulesléoluctions, in which case no confluence
nor termination is required but an application strategyasassary. Regarding rewriting as a relation
and considering abstract rewrite systems leads to condildration tree exploration: derivations are
computations and strategies describe selected commdatio

Based on rewriting concepts, that are briefly recalled irti8e@, several definitions of strategy are
reviewed and connected. In order to catch the higher-oraerra of strategies, a strategy is first defined
as a proof term expressed in rewriting logic in Section 3 tlmerewriting calculus in Section 4. In
Section 5, a strategy is seen as a set of paths in a derivadigntien to recover the definition of strategy
in sequential path-building games or in functional progsaastrategy is considered as a partial function
that associates to a reduction-in-progress, the possskesieps in the reduction sequence. In this paper,
the goal is to show the progression of ideas and definitiotiseo€oncept, as well as their correlations.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.): (© Hélene Kirchner
1st Workshop on Strategic Reasoning 2013 (SR’13) This work is licensed under the
EPTCS 112, 2013, pp. 99-105, doi:10.4204/EPTCS.112.15 Creative Commons Attribution License.



100 A rewriting point of view on strategies

2 Rewriting

Since the 80s, many aspects of rewriting have been studiadtomated deduction, programming lan-
guages, equational theory decidability, program or pn@sfdformation, but also in various domains such
as chemical or biological computing, plant growth modelieig. In all these applications, rewriting def-
initions have the same basic ingredients. Rewriting tans$ syntactic structures that may be words,
terms, propositions, dags, graphs, geometric objectségenents, and in general any kind of structured
objects. Transformations are expressed with patterndes.rRules are built on the same syntax but with
an additional set of variables, s&j, and with a binder, relating the left-hand side and the right-hand
side of the rule, and optionally with a condition or consitahat restricts the set of values allowed for
the variables. Performing the transformation of a syntesttiucturet is applying the rule labelefiont,
which is basically done in three steps: (1) match to seleetlex oft at positionp denoted;, (possibly
modulo some axioms, constraints,...); (2) instantiatertihe variables by the result(s) of the matching
substitutiono; (3) replace the redex by the instantiated right-hand dtademally: t rewrites tot” using
the rulel : 1 = rif t, = o(l) andt’ = t[o(r)]p. This is denoted —, , ;1.

In this process, there are many possible choices: the sgH,ithe position(s) in the structure, the
matching substitution(s). For instance, one may chooseptya rule concurrently at all disjoint posi-
tions where it matches, or using matching modulo an equaititveory like associativity-commutativity,
or also according to some probability.

3 Rewriting logic

The Rewriting Logic is due to J. Meseguer and N. Marti-Qli&t].
As claimed orhttp://wrla2012.1cc.uma.es/:

Rewriting logic (RL) is a natural model of computation andexpressive semantic framework for
concurrency, parallelism, communication, and interaatidt can be used for specifying a wide range
of systems and languages in various application fields. db dlas good properties as a metalogical
framework for representing logics. In recent years, seMargguages based on RL (ASF+SDF, CafeOBJ,
ELAN, Maude) have been designed and implemented.

In Rewriting Logic, the syntax is based on a set of tei#s#) built with an alphabet of function
symbols with arities, a theory is given by a sétof labeled rewrite rules denotetx,...,x,) : | =r,
where label€(xy,...,X,) record the set of variables occurring in the rewrite rulenfidas are sequents
of the form: t — t/, wherer is aproof termrecording the proof of the sequen#Z ~ m:t —t'if
.t — t’ can be obtained by finite application of equational deduatides given below. In this context,
a proof termrt encodes a sequence of rewriting steps called a derivation.

Reflexivity For anyt € .7 (.%):
tit—t
Congruence For anyf € .# with arity(f) = n:

ity —t . Tty ot

f(rm,...,m): ft,... th) = F(t7,....th)

Transitivity
m:ty—ty ity —>t3

m, T . t1 —>13
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Replacement For any/(xy,..., %) : | =r € Z,

miti—t . Tty ot
O, ... Th) I (t,. . t) = r(tg,.. . 1))

The ELAN language, designed in 1997, introduced the concept okgirdiy giving explicit con-
structs for expressing control on the rule application Eyond labeled rules and concatenation denoted
“" other constructs for deterministic or non-determifihoice, failure, iteration, were also defined in
ELAN. A strategy is there defined as a set of proof terms in rewritigic and can be seen as a higher-
order function : if the strategq is a set of proof terms, applying{ to the termt means finding all terms
t’ such thatt: t — t’ with me . Since rewriting logic is reflective, strategy semantics ba defined
inside the rewriting logic by rewrite rules at the meta-levéhis is the approach followed bylaude
in [8, 18].

4 Rewriting Calculus

The rewriting calculus, also callggtcalculus, has been introduced in 1998 by Horatiu CirstdeClaude
Kirchner [7]. As claimed omttp://rho.loria.fr/index.html:

The rho-calculus has been introduced as a general meansitorunty integrate rewriting and -
calculus. This calculus makes explicit and first-class &lt®components: matching (possibly modulo
given theories), abstraction, application and substdos.

The rho-calculus is designed and used for logical and seitarpurposes. It could be used with
powerful type systems and for expressing the semantictediaged as well as object oriented paradigms.
It allows one to naturally express exceptions and impeeatéatures as well as expressing elaborated
rewriting strategies.

Some features of the rewriting calculus are worth emphagibere: first-order terms andterms
arep-terms @ x.tis (x=-t)); a rule is ap-term as well as a strategy, so rules and strategies areaebstr
tions of the same nature and “first-class concepts”; apmicgeneralizeg —reduction; composition of
strategies is like function composition; recursion is @gged as id calculus with a recursion operator
u.

In order to illustrate the use gd-calculus, let us consider the Abstract Biochemical Calsubr
Peio-calculus) [2]. This rewriting calculus models autonomaystems abiochemical programsvhich
consist of the following components: collections of molesuobjects and rewrite rules), higher-order
rewrite rules over molecules (that may introduce new renaniies in the behaviour of the system) and
strategies for modeling the system’s evolution. A visuptesentation vigort graphsand an implemen-
tation are provided by the PORGY environment described]inlfiLthis calculus, strategies are abstract
molecules, expressed with an arrow constructerf@r rule abstraction), an application operat@nd a
constant operataitk for explicit failure.



102 A rewriting point of view on strategies

Below are examples of useful strategiepip-calculus:

id £ X=X
fail £ X= stk
seq(S1S) 2 X = $(SeX)
first(S,S) £ X= (S°X) (stk= (X)) (Si*X)
try(S) £ first(Sid)
not(S) £ X = first(stk = X,X' = stk)*(SX)
ifTE(S, S, ) = X = first(stk = SX, X' = $X)*(S*X)

repeat(S) = uX.try(seq(SX))

Based on such constructions, ig,-calculus allows failure handling, repair instructionsrgstent
application of rules or strategies, and more generallytegiias for autonomic computing, as described
in [3]. In [2], it is shown how to do invariant verification inidchemical programs. Thanks fm;io-
calculus, an invariant property can in many cases, be edasla special rule in the biochemical program
modeling the system and this rule is dynamically checkedaah execution step. For instance, an
invariant of the system is encoded by a r@de= G and the strategy verifying such an invariant is
encoded with a persistent stratefiyrst(G = G, X = stk). In a similar way, an unwanted occurrence
of a concrete molecul& in the system can be modeled with the r(&=- stk). And instead of yielding
failure stk, the problem can be “repaired” by associating to each ptgtlee necessary rules or strategies
to be inserted in the system in case of failure.

5 Abstract Reduction Systems

Another view of rewriting is to consider it as an abstracatieh on structural objects. AAbstract
Reduction System (AR@D, 15, 6] is a labeled oriented graptr,.#’) with a set of labelsZ. The nodes

in ¢ are calledbbjects The oriented labeled edges.i#i are calledsteps a % bor (a, @,b), with source

a, target bandlabel ¢. Derivations are composition of steps.

For a given ARS, an.«7-derivationis denotedrt : ag ®, =i @, Q... LN a, or ag = an, Where

n € N. Thesourceof 1is gy and its domairbom(m) = {ap}. Thetargetof 1is a, and applyingrt to ag
gives the singleton sd#,}, which is denotedray = {a,}.

Abstract strategies are defined in [15] and in [6] as follofes:a given ARS<”, anabstract strategy
{ is a subset of the set of all derivations (finite or not)6f The notions of domain and application are
generalized as followdDom({) = Upc, Dom(m) and{-a= {b | 3 < { such tha = b} = {ra| me

{}. Playing with these definitions, [6] explored adequate dtéfims of termination, normal form and
confluence under strategy.

Since abstract reduction systems may involve infinite dedbjects, of reduction steps and of deriva-
tions, we can schematize them with constraints at diffeledls: (i) to describe the objects occurring
in a derivation (ii) to describe, via the labels, requiretsamm the steps of reductions (iii) to describe the
structure of the derivation itself (iv) to express requiegns on the histories. The framework developed
in [16] defines a strategg as all instances (D) of a derivation schemB such thato is solution of a
constraintC involving derivation variables, object variables and laaiables. As a simple example,
the infinite set of derivations of length one that transfarimto f(a") for all n € N, wherea" = ax...xa
(ntimes), is simply described bya — f(X) | Xxa=a ax*X), where=x indicates that the constraint is
solved modulo associativity of the operatorThis very general definition of abstract strategies isechll
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extensionaln [6] in the sense that a strategy is defined explicitly ag @akderivations of an abstract re-
duction system. The concept is useful to understand ang tadiiction systems and deduction systems
as explored in [15].

But abstract strategies do not capture another point of,\ééso frequently adopted in rewriting:
a strategy is a partial function that associates to a remhiti-progress, the possible next steps in the
reduction sequence. Here, the strategy as a function depeyglon the object and the derivation so far.
This notion of strategy coincides with the definition of &gy in sequential path-building games, with
applications to planning, verification and synthesis ofatmrent systems [9]. This remark leads to the
following intensionaldefinition given in [6]. The essence of the idea is that striateare considered as
a way of constraining and guiding the steps of a reductionatSmy step in a derivation, it should be
possible to say whether a contemplated next step obeysr#ttegst{ . In order to take into account the
past derivation steps to decide the next possible onesjdtwyhof a derivation has to be memorized and
available at each step. Through the notion of traced-ob§gdet = [(ap, @), .., (an, @)]ain 01!, each
objecta memorizes how it has been reached with the tace

An intensional strategyor <7 = (¢,.7) is a partial functiomA from 0 t0 2 such that for every
traced objeciala, A([a]a) C {me . | Dom(n) = a}. If A([a]a) is a singleton, then the reduction step
underA is deterministic.

As described in [6], an intensional strategynaturally generates an abstract strategy, called its
extensionthis is the abstract stratedy consisting of the following set of derivations:

VneN, ma B a Bap... 2ha, €, iff Vjelo,n], (ajﬂajﬂ)e)\([a]aj).
This extension may obviously contain infinite derivatiomssuch a case it also contains all the finite
derivations that are prefixes of the infinite ones, and smised! under taking prefixes.

A special case are memoryless strategies, where the fanctimes not depend on the history of the
objects. This is the case of many strategies used in regsiystems, as shown in the next example. Let
us consider an abstract reduction systefiwhere objects are terms, reduction is term rewriting with a
rewrite rule in the rewrite system, and labels are positwhere the rewrite rules are applied. Let us
consider an ordex on the labels which is the prefix order on positions. Then tivenisional strategy

that corresponds to innermost rewritinghig,(t) = {m:t By | p=max{p |t Pove <71} When a
lexicographic order is used, the classidghtmost-innermosstrategy is obtained.

Another example, to illustrate the interest of traced dijeis the intensional strategy that restricts
the derivations to be of bounded lendthts definition makes use of the size of the tracelenotedal:
Aik([ala) ={m| me ., Dom(m) = a, |a| < k—1}. However, as noticed in [6], the fact that intensional
strategies generate only prefix closed abstract stratpggents us from computing abstract strategies
that look straightforward: there is no intensional strgtégat can generate a set of derivations of length
exactlyk. Other solutions are provided in [6].

6 Conclusion

A lot of interesting questions about strategies are yet pgeing from the definition of this concept
and the interesting properties we may expect to prove, upaaéfinition of domain specific strategy
languages. As further research topics, two directions gealty interesting to explore:

- The connection with Game theory strategies. In the fieldystem design and verificatiogameshave
emerged as a key tool. Such games have been studied sincestimalfi of 20th century in descriptive
set theory [14], and they have been adapted and generatizaglications in formal verification; intro-
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ductions can be found in [13, 20]. It is worth wondering wiggtthe coincidence of the term “strategy”
in the domains of rewriting and games is more than a pun. llshue fruitful to explore the connection
and to be guided in the study of the foundations of stratdgyesome of the insights in the literature of
games.

- Proving properties of strategies and strategic redustidnot of work has already begun in the rewrit-
ing community and have been presented in journals, workslogonferences of this domain. For
instance, properties of confluence, termination, or cotapkss for rewriting under strategies have been
addressed, either based on schematization of derivates,tas in [12], or by tuning proof methods to
handle specific strategies (innermost, outermost, lazyeglies) as in [10, 11]. Other approaches as [4]
use strategies transformation to equivalent rewrite syst® be able to reuse well-known methods. Fi-
nally, properties of strategies such as fairness or loepriess could be worthfully explored by making
connections between different communities (functionalgpamming, proof theory, verification, game
theory,...).
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Existing approaches to the synthesis of reactive systems typically involve the construction of transi-
tion systems such as Mealy automata. However, in order to obtain a succinct representation of the
desired system, structured programs can be a more suitable model. In 2011, Madhusudan proposed
an algorithm to construct a structured reactive program for a given w-regular specification without
synthesizing a transition system first. His procedure is based on two-way alternating @-automata on
finite trees that recognize the set of “correct” programs.

We present a more elementary and direct approach using only deterministic bottom-up tree au-
tomata that compute so-called signatures for a given program. In doing so, we extend Madhusudan’s
results to the wider class of programs with bounded delay, which may read several input symbols
before producing an output symbol (or vice versa). As a formal foundation, we inductively define a
semantics for such programs.

1 Introduction

Algorithmic synthesis is a rapidly developing field with many application areas such as reactive sytems,
planning and economics. Most approaches to the synthesis of reactive systems, for instance [2, 12, 11, 8],
revolve around synthesizing transition systems such as Mealy or Moore automata. Unfortunately, the
resulting transition systems can be very large. This has motivated the development of techniques for the
reduction of their state space (for example, [6]). Furthermore, the method of bounded synthesis [14, 4]
can be used to synthesize minimal transition systems by iteratively increasing the bound on the size of
the resulting system until a solution is found. However, it is not always possible to obtain small transition
systems. For example, for certain specifications in linear temporal logic (LTL), the size of the smallest
transition systems satisfying these specifications is doubly exponential in the length of the formula [13].

Aminof, Mogavero and Murano [1] provide a round-based algorithm to synthesize hierarchical tran-
sition systems, which can be exponentially more succinct than corresponding flat” transition systems.
The desired system is constructed in a bottom-up manner: In each round, a specification is provided and
the algorithm constructs a corresponding hierarchical transition system from a given library of available
components and the hierarchical transition systems created in previous rounds. Thus, in order to ob-
tain a small system in the last round, the specifications in the previous rounds have to be chosen in an
appropriate way.

Current techniques for the synthesis of (potentially) succinct implementations in the form of circuits
or programs typically proceed in an indirect way, by converting a transition system into such an imple-
mentation. For example, Bloem et al. [3] first construct a symbolic representation (a binary decision
diagram) of an appropriate transition system and then extract a corresponding circuit. However, this
indirect approach does not necessarily yield a succinct result.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.): (© Benedikt Briitsch
1st Workshop on Strategic Reasoning 2013 (SR’13) This work is licensed under the
EPTCS 112, 2013, pp. 107-113, doi:10.4204/EPTCS.112.16 Creative Commons Attribution License.
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Madhusudan addresses this issue in [10], where he proposes a procedure to synthesize programs
without computing a transition system first. He considers structured reactive programs over a given
set of Boolean variables, which can be significantly smaller (regarding the length of the program code)
than equivalent transition systems. To some degree, these programs separate control flow from memory.
Such a separation can also be found in a related approach that has recently been introduced by Gelderie
[5], where strategies for infinite games are represented by strategy machines, which are equipped with
control states and a memory tape.

Given a finite set of Boolean variables and a nondeterministic Biichi automaton recognizing the
complement of the specification, Madhusudan constructs a two-way alternating w-automaton on finite
trees that recognizes the set of all programs over these variables that satisfy the specification. This
automaton can be transformed into a nondeterministic tree automaton (NTA) to check for emptiness and
extract a minimal program (regarding the height of the corresponding tree) from that set. In contrast to
the transition systems constructed by classical synthesis algorithms, the synthesized program does not
depend on the specific syntactic formulation of the specification, but only on its meaning.

In this paper, we present a direct construction of a deterministic bottom-up tree automaton (DTA)
recognizing the set of correct programs, without a detour via more intricate types of automata. The
DTA inductively computes a representation of the behavior of a given program in the form of so-called
signatures. A similar representation is used by Lustig and Vardi in their work on the synthesis of reactive
systems from component libraries [9] to characterize the behavior of the components.

Our approach is not limited to programs that read input and write output in strict alternation, but
extends Madhusudan’s results to the more general class of programs with bounded delay: In general, a
program may read multiple input symbols before writing the next output symbol, or vice versa, causing a
delay between the input sequence and the output sequence. In a game-theoretic context, such a program
corresponds to a strategy for a controller in a game against the environment where in each move the
controller is allowed to either choose at least one output symbol or skip and wait for the next input (see
[7]). We consider programs that never cause a delay greater than a given bound k € N.

For a fixed k, the complexity of our construction matches that of Madhusudan’s algorithm. In particu-
lar, the size of the resulting DTA is exponential in the size of the given nondeterministic Biichi automaton
recognizing the complement of the specification, and doubly exponential in the number of program vari-
ables. In fact, we establish a lower bound, showing that the set of all programs over n Boolean variables
that satisfy a given specification cannot even be recognized by an NTA with less than 22" states, if any
such programs exist. However, note that a DTA (or NTA) accepting precisely these programs enables us
to extract a minimal program for the given specification and the given set of program variables. Hence,
the synthesized program itself might be rather small.

To lay a foundation for our study of the synthesis of structured reactive programs, we define a formal
semantics for such programs, which is only informally indicated by Madhusudan. To that end, we
introduce the concept of Input/Output/Internal machines (IOl machines), which are composable in the
same way as structured programs. This allows for an inductive definition of the semantics.

2 Syntax and Semantics of Structured Programs

We consider a slight modification of the structured programming language defined in [10], using only
single Boolean values as input and output symbols to simplify notation. Expressions and programs over
a finite set B of Boolean variables are defined by the following grammar, where b € B:
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(expry u= true | false | b | (expr)A(expr) | (expr)V {(expr) | —(expr)

(prog) == b:= (expr) | input b | output b | (prog);(prog)
if (expr) then (prog) else (prog) | while (expr) do (prog)

Intuitively, “input b” reads a Boolean value and stores it in the variable . Conversely, “output b”
writes the current value of b. To define a formal semantics we associate with each program a so-called
101 machine. An IOl machine is a transition system with designated entry and exit states. It can have
input, output and internal transitions, with labels of the form (ain,€), (€,a0u) or (€,€), respectively,
where din, dout € B = {0, 1}. An IOI machine is equipped with a finite set B of Boolean variables, whose
valuation is uniquely determined at each state. A valuation is a function ¢ : B — B that assigns a Boolean
value to each variable.

The associated I0I machine of an atomic program (i.e., an input statement, output statement or
assignment) has one entry state and exit state for each possible variable valuation, and its transitions lead
from entry states to exit states. For example, at each entry state of the associated IOl machine of an
atomic program of the form “input b”, there are two outgoing input transitions — one for each possible
input symbol. The target of such an input transition is the exit state whose variable valuation is obtained
by replacing the value of b with the respective input symbol. The IOI machine of a composite program
can be constructed inductively from the IOI machines of its subprograms, leveraging their entry and exit
states and the variable valuations of these states.

A computation p of a program is a finite or infinite sequence of subsequent transitions of the corre-

sponding IOl machine:

(a1,b1) (az,b2) (a3,b3)

The label of p is the pair of finite or infinite words (ajazas..., bibabs...) € (B*UB®) x (B*UB®).
An initial computation starts at the unique entry state where all variables have the value 0. The infinite
behavior ((p)) of a program p is the set of infinite input/output sequences (¢, 3) € B® x B® that can
be produced by an initial computation of p. Furthermore, we call a program reactive if all its initial
computations can be extended to infinite computations that yield an infinite input and output sequence.

At any given time during a computation g as above, the length of the input sequence a;a; . .. a; and the
output sequence b1 b, ... b; might differ. The supremum of these length differences along a computation
is called the delay of the computation. If the delay of a computation does not exceed a given bound k € N
then we call this computation k-bounded. A program is said to be k-bounded if all its computations are k-
bounded. By restricting the infinite behavior of a program p to labels of k-bounded initial computations,
we obtain the k-bounded infinite behavior ((p))y of p.

3 Solving the Synthesis Problem Using Deterministic Tree Automata

The synthesis problem for structured reactive programs with bounded delay can be formulated as follows:
Given an @-regular specification R C (B x B)® representing the permissible input/output sequences, a
finite set of Boolean variables B and a delay bound k € N, the task is to construct a structured reactive
program p over B with k-bounded delay such that ({p)) C R — or detect that no such program exists.
(However, our results can easily be generalized to finite input and output alphabets other than B by
allowing input and output statements that process multiple Boolean values as in [10].) In the following we
assume that the specification R is provided in the form of a nondeterministic Biichi automaton (NBA) </
over the alphabet B x B that recognizes the complement of the specification, i.e., £ (%) = (B x B)“ \R,
which is always possible for w-regular specifications.
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Our synthesis procedure is based on the fact that programs can be viewed as trees. Figure 1 shows
an example for a tree representation of a program. We use deterministic bottom-up tree automata (DTAs,
see, for example, [15]) to recognize sets of programs. More specifically, we show the following theorem:
Theorem 1. Let B be a finite set of Boolean variables, let k € N and let </ be a nondeterministic Biichi
automaton recognizing the complement of a specification R C (B x B)®. We can construct a DTA that
accepts a tree p iff p is a reactive program over B with k-bounded delay and {(p)) C R, such that the size
of this DTA is doubly exponential in |B| and k and exponential in the size of <.

while true do { ’m

input bp; —— /m\/m\

by :=byVby;
output b

}

Figure 1: Example: A program and its tree representation.

An emptiness test on this DTA yields a solution to the synthesis problem. We obtain the desired tree
automaton by intersecting three DTAs: The first DTA (B, k, %) recognizes the set of programs over
B whose k-bounded computations satisfy the specification R. That means, a program p is accepted iff
{({p))r C R. The second DTA Preqctive (B) recognizes the reactive programs over B. Finally, we use a
third DTA Pgelay (B, k) to recognize the programs over B with k-bounded delay. We only consider the
construction of P, (B, k, o7%) here, as the other two DTAs can be constructed in a very similar way.

The DTA Hu(B, k, o7%) evaluates a given program p in a bottom-up manner, thereby assigning one
of its states to each node of the program tree. The state reached at the root node must provide enough
information to decide whether ((p))x C R, or equivalently, whether ((p))xN.Z (%) = 0. To that end, we
are interested in the possible runs of .oz on the input/output sequences generated by the program. Thus,
we consider pairs of program computations and corresponding runs of o7, which we call co-executions.
Intuitively, Pt (B, k, 974 ) inductively computes a representation of the possible co-executions of a given
program and .«%;. We define these representations, called co-execution signatures, in the following.

The beginning and end of a co-execution can be indicated by a valuation of the program variables and
a state of @%. However, we have to consider the following: The input sequence of a computation might
be longer or shorter than its output sequence, but a run of .o% only consumes input and output sequences
of the same length. The suffix of the input/output sequence after the end of the shorter sequence, called
the overhanging suffix, is hence still waiting to be consumed by .<%. Thus, we indicate the start and end
of a co-execution by tuples of the form y = (0,s,u,v), called co-configurations, where o is a variable
valuation, s is a state of . and (u,v) € (B* x {e}) U ({e} x B*) is an overhanging suffix. Since we are
only interested in k-bounded computations, we only consider co-configurations with |u| < k and |v| < k.
The set of these co-configurations for a given set of variables B and a given NBA .@% is denoted by
CoCfgi(B, og).

A finite co-execution is called complete if the program terminates at the end of the computation. The
finite co-execution signature cosigﬁ“( P, %%, k) of a program p (with respect to <7 is a relation consisting
of tuples of the form (¥, f,7’) with f € B, which indicate that there exists a complete k-bounded co-
execution that starts with the co-configuration y and ends with ¥’ such that the corresponding run of
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</ visits a final state iff f = 1. The infinite co-execution signature cosig™(p, </, k) of p is a set of co-
configurations with y € cosig™(p, </, k) iff there exists an infinite k-bounded co-execution starting with
7 such that the run of .o7; visits a final state infinitely often. We use pairs consisting of a finite and infinite
co-execution signature as states of the DTA P (B, k, o7%). The size of the DTA is hence determined by
the number of possible co-execution signatures, which is doubly exponential in the number of variables
and k and exponential in the size of %. For a fixed k, this matches the complexity of Madhusudan’s
construction [10].

If oy is the initial variable valuation (where all variables have the value 0) and s is the initial state
of </, then (0p, 50, €, €) € cosig™(p, oz, k) iff there is an initial k-bounded computation of p such that
some corresponding run of o7 visits a final state infinitely often, so cosig™(p, o7y, k) is indeed sufficient
to decide whether ((p))r C R. It remains to be shown that the co-execution signatures can be computed
inductively. Exemplarily, we consider the case of programs of the form p = “while e do p;”. First,
we construct a representation cosig; (p1, %%, k) of all finite sequences of consecutive co-executions of p;
that are compatible with the loop condition e. To that end, we consider only those tuples (¥, f,7’) in
cosig( P1, 9%, k) where the variable valuation in 7y satisfies the loop condition e, and compute the re-
flexive transitive closure of the resulting relation. Formally, we have cosig} (p1, <%, k) = closure(C) with
C={((o,s,u,v),f,y) € cosig"™(p1,e%,k) | 0 € [e] }. Here, [¢] denotes the set of variable valuations
that satisfy e, and closure(C) is the smallest relation D C CoCfg, (B, .o%) x B x CoCfg,(B, %) such that

e (7,0,7) € D for all y € CoCfg, (B, %%), and
e (v,.f1,Y) €D, (Y, fo,7") € Cimplies (y,max{f1,f2},7") € D.

Using cosig;(p1, </, k), the co-execution signatures for p can be computed by the following reason-
ing: A finite co-execution of p = “while e do p;” (and %) can be decomposed into a finite sequence
of co-executions of p;. An infinite co-execution of p can either eventually stay inside a loop iteration for-
ever or traverse infinitely many iterations. It can therefore be decomposed either into a finite sequence of
co-executions of p; followed by an infinite co-execution of pp, or into a finite sequence of co-executions
of p; followed by a cycle of co-executions of p;, leading back to a previous co-configuration. Thus, we
obtain the following formal representation of the co-execution signatures for p:

o (v,f,(c",s',u' V) € cosigh™(p, ofp, k) iff (y,f,(c,s',u',V')) € cosig:(p1, 5, k) and 6’ ¢ [e].
o Y€ cosig”(p, oy, k) iff at least one of the following holds:
— There exist Y/ = (0’,5',u’,V') € CoCfg,(B, ) and f € B
such that (y, f,v') € cosigi(p1, %, k), o' € [e] and ¥y’ € cosig™(p1, g, k).

)
— There exist Y/ = (o/,s',u’,V') € CoCfg, (B, %) and f € B
such that (v, f, ') € cosig;(p1, g, k), o' € [e] and (v',1,7') € cosig;(p1, g, k).

4 Lower Bound for the Size of the Tree Automata

We show the following lower bound for the size of any nondeterministic tree automaton (NTA) recog-
nizing the desired set of programs:

Theorem 2. Let B be a set of n Boolean variables, let k € N and let R C (B x B)® be a specification that
is realizable by some program over B with k-bounded delay. Let € be an NTA that accepts a tree p iff p
is a reactive program over B with k-bounded delay and ((p)) C R. Then € has at least 2*" " states.
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For a sketch of the proof, consider a set of Boolean variables B = {by,...,b,}. There are 22
functions of the type B"~! — B. Each of these functions can be implemented by a program that checks
the values of by, ...,b,—_; and sets b, to the corresponding function value. An NTA as in Theorem 2 must
be able to distinguish all of these programs. Otherwise, let p; and p; be two such programs that cannot be
distinguished by the NTA. We could then construct a program that satisfies the specification and contains
pi as a subprogram, but runs into a non-reactive infinite loop if this subprogram is replaced by p;. The
NTA would accept both variants, including the non-reactive program, which contradicts the premise.

5 Conclusion

The contributions of this paper are threefold, advancing the study of structured reactive programs: We
introduced a formal semantics for structured reactive programs in the sense of [10]. Furthermore, we
presented a new synthesis algorithm for structured reactive programs with bounded delay, using the
elementary concept of deterministic bottom-up tree automata. Finally, we showed a lower bound for the
size of any nondeterministic tree automaton that recognizes the set of specification-compliant programs,
emphasizing the importance of choosing a small yet still sufficient set of program variables. Estimating
the number of Boolean variables that are needed to realize a given specification is a major open problem.
While [13] implies an exponential upper bound for the required number of variables in the case of LTL
specifications, a corresponding lower bound is still to be determined.

Acknowledgments. The author would like to thank Wolfgang Thomas for his helpful advice and Mar-
cus Gelderie for fruitful discussions.
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We investigatauniformity propertiesof strategies. These properties involve sets of plays ierord
to express useful constraints on strategies that arg+oaticulus definable. Typically, we can state
that a strategy is observation-based. We propose a formglége to specify uniformity proper-
ties, interpreted over two-player turn-based arenas egdipvith a binary relation between plays.
This way, we capture.g.games with winning conditions expressible in epistemicperal logic,
whose underlying equivalence relation between plays ttsftbe observational capabilities of agents
(for example, synchronous perfect recall). Our framewaturelly generalizes many other situa-
tions from the literature. We establish that the problemyuottisesizing strategies under uniformity
constraints based on regular binary relations betweers [gayon-elementary complete.

1 Introduction

In extensive infinite duration games, the arena is repredeas a graph whose vertices denote positions
of players and whose paths denote plays. In this contextategy of a player is a mapping prescribing
to this player which next position to select provided shetbasake a choice at this current point of the
play. As mathematical objects, strategies can be seen agarifiees obtained by pruning the infinite
unfolding of the arena according to the selection presdrliethis strategy; outcomes of a strategy are
therefore the branches of the trees.

Strategies of players are not arbitrary in general, sineggrs aim at achieving some objectives.
Infinite-duration game models have been intensively stutbe their applications in computer science
[3] and logic [13]. First, infinite-duration games providenatural abstraction of computing systems’
non-terminating interaction [2] (think of a communicatiprotocol between a printer and its users, or
control systems). Second, infinite-duration games nayuoatur as a tool to handle logical systems for
the specification of non-terminating behaviors, such ashferpropositionalu-calculus [10], leading to
a powerful theory of automata, logics and infinite games Ht®] to the development of algorithms for
the automatic verification (“model-checking”) and synikasf hardware and software systems. In both
cases, outcomes of strategies are submittea-tegular conditions representing some desirable property
of a system.

Additionally, the cross fertilization of multi-agent sgstis and distributed systems theories has led
to equip logical systems with additional modalities, sustepistemic ones, to capture uncertainty [27,
21, 11, 24, 20, 15], and more recently, these logical systeaws been adapted to game models in order
to reason about knowledge, time and strategies [17, 19, 9. \ihole picture then becomes intricate,
mainly because time and knowledge are essentially orttadggielding a complex theoretical universe
to reason about. In order to understand to which extent keawd and time are orthogonal, the angle of
view where strategies are infinite trees is helpful: Timehigud thevertical dimension of the trees as it
relates to the ordering of encountered positions alongsplasanches) and to the branching in the tree.

F. Mogavero, A. Murano, and M.Y. Vardi (Eds.): © B. Maubert, S. Pinchinat & L. Bozzelli
1st Workshop on Strategic Reasoning 2013 (SR’13) This work is licensed under the Creative Commons
EPTCS 112, 2013, pp. 115-122, doi:10.4204/EPTCS.112.17 Attribution-Noncommercial License.
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On the contrary, Knowledge is about therizontaldimension, as it relates plays carrying, e.g., the same
information.

As far as we know, this horizontal dimension, although esiterly studied when interpreted as
knowledge or observation [4, 17, 19, 8, 1, 9], has not beemeaddd in its generality. In this paper,
we aim at providing a unified setting to handle it. We introgltice generic notion afniformity proper-
tiesand associated so-callediform strategiegthose satisfying uniformity properties). Some notions of
“uniform” strategies have already been used, e.qg., in thisngeof strategic logics [29, 5, 19] and in the
evaluation game of Dependence Logic [28], which both fdb e general framework we present here.

We use a simple framework with two-player turn-based aramaswhere information lies in posi-
tions, but the approach can be extended to other settinggitiéwhlly, although uniformity properties
can be described in a set-theoretic framework, we propaséotiical formalismRLTL which can be
exploited to address fundamental automated techniquéssasuthe verification of uniformity properties
and the synthesis of uniform strategies — arbitrary uniftyrmoroperties are in general hopeless for au-
tomation. The formalism we use combines the Linear-timegaal LogicLTL [12] and a new modality
R (for “for all related plays”), the semantics of which is giviby a binary relation between plays. Modal-
ity R generalizes the knowledge operat&*of [15] for the epistemic relations of agents in Interpkete
Systems. The semantic binary relations between plays ayelittte constrained: they are not neces-
sarily equivalences, to capture.g.plausibility (pre)orders one finds in doxastic logic [16gither are
they knowledge-based, to capture particular strategigsines where epistemic aspects are irrelevant.
Formulas of the logic are interpreted over outcomes of aegfya TheR modality allows to universally
quantify over all plays that are in relation with the curr@idy. Distinguishing between the universal
quantification over all plays in the game and the universalntjtication over all the outcomes in the
strategy tree yields two kinds of uniform strategies: filly-uniform strategiesnd thestrictly-uniform
strategies

As extensively demonstrated in [22], uniform propertiesitaut to be many in the literature: they
occur in games with imperfect information, in games with@paconditions and more generally with
epistemic conditions, as non-interference propertie®ofuting systems, as diagnosability of discrete-
event systems, in the game semantics of Dependence Logic.

We investigate the automated synthesis of fully-uniforratsgies, for the case of finite arenas and
binary relations between plays that are rational in the es@fig6]. Incidentally, all binary relations
that are involved in the relevant literature seem to folltwg trestriction. In this context, two problems
can be addressed: tHfiglly-uniform strategy problenand thestrictly-uniform strategy problemwhich
essentially can be formulated as “given a finite arena, &fstite transducer describing a binary relation
between plays, and a formula expressing a uniformity ptgpdoes there exist a fully-uniform (resp.
strictly-uniform) strategy for Player 1?”. From [22], thalf/-uniform strategy problem is decidable but
non-elementary — since then we have established that inisf@nentary hard. The algorithm involves
an iterated non-trivial powerset construction from thenarand the finite state transducer which enables
to eliminate innermosR modalities. Hence, the required number of iterations mext¢he maximum
number of nestedR modalities of the formula expressing the uniformity prdperAs expected, each
powerset construction is computed in exponential times Pnbcedure amounts to solving an ultimate
LTL game, for which a strategy can be synthesized [25] and trhaekl as a solution in the original
problem. The decidability of the strictly-uniform strayegroblem is an open question.

The rest of the paper is organized in five sections. In Se@jone present the standard material
two-player turn-based arenas. We set up the framework dinmtedeniform strategies in Section 3, and
we illustrate the notion with two examples in Section 4. Fijngn Section 5, we give tight complexity
bounds for the fully-uniform strategy problem, and we dgsctuture work in Section 6.
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2 Preliminaries

We consider two-player turn-based games that are playedagig with vertices labelled with proposi-
tions. These propositions represent the relevant infoaomdor the uniformity properties one wants to
state. From now on and for the rest of the paper, wARbe an infinite set chtomic propositions

An arenais a structure? = (V,E, v, ¢) whereV =V; WV, is the set opositions partitioned between
positions of Player 1\{;) and those of Player 2/4), E C (V1 x V2) U (V2 x V;) is the set okdgesvp € V
is theinitial positionand/ : V — Z7(AP) is avaluation function mapping each position to the finite set
of atomic propositions that hold in this positioRlays. andPlays, are, respectively, the set of finite and
infinite plays For an infinite playr=vov1 ... andi € N, mfi] ;== v; andr]0,i] :=vp...V;. For afinite play
P =VoVi...Vp, lastp) = vy.

A strategyfor Player 1 is a partial functiot : Plays. — V that maps a finite play ending A to the
next position to play. Letr be a strategy for Player 1. We say that a pteg Plays, is induced byo if
for all i > 0 such thatri] € V4, rji + 1] = o(m]0,i]), and theoutcome ofa, noted Outo) C Plays,, is
the set of all infinite plays that are induced &y Definitions are similar for Player 2's strategies.

3 Uniform strategies

We define the formal languadRLTL to specify uniformity properties. This language enablesxaress
properties of the dynamics of plays, and resembles the Lifemporal Logic [TL) [12]. However,
while LTL formulas are evaluated on individual plays (paths), we vemme to express properties on
“bundles” of plays. To this aim, we equip arenas with a binahation between finite plays, and we
enrich the logic with a modalitir that quantifies over related plays, the intended meanindrgfHolds
in p” being “¢ holds in every play related {o".

The syntax ofRLTL is similar to that of linear temporal logic with knowledges]1 However, we
useR instead of the usual knowledge operatoto emphasize that it need not be interpreted in terms of
knowledge in general, but merely as a way to state propestibandles of plays. The syntax is:

o Yi=p|l-¢|dAY|O¢|dUY|Re pcAP

Consider an aren®& = (V,E,vp,¢) and a rational relation» C Plays. x Plays.. A formula ¢ of
RLTL is evaluated at some point N of an infinite play € Plays,, within auniversell C Plays,.
The semantics is given by induction over formulas.

N,mik=pif pe (i) N,miE=-¢ if N,mikEe
NmiE¢gAyY if NmilE¢andN, mikE= Y NmiEo¢ if N,mi+1E¢
N, mi = ¢Uy if thereisj>isuchthafl,m, j = @andforalli <k<j, M, mki=¢
N, mi=Rg if forall ™ €N, j e N such thatr0,i] ~ [0, ], N, 7,j = ¢

From this semantics, we derive two notions of uniform sgi®, which differ only in the universe the
R modality quantifies over: Out) or Plays, (with the latter, related plays not induced by the strategy
also count). The motivation for these two definitions is ckeam [22] where many examples from the
literature are given.

Definition 1 Let¥ be an arena;— be a rational relation andp be an R.TL formula. A strategy is:
(~, ¢)-strictly-uniformif for all e Out(o), Out(o), m,0 |= ¢,
(~, ¢)-fully-uniform if for all me Out(o), Plays,, 7,0 = ¢.
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4 Concrete examples

In this section we illustrate our notions of strictly andlyuliniform strategies defined in the previous
section with the examples of observation-based strateégigmmes with imperfect information, and
games with opacity condition.

4.1 Observation-based strategies

Games with imperfect information, in general, are gameshiciwsome of the players do not know ex-
actly what is the current position of the game. Poker is amga of imperfect-information game: one
does not know which cards her opponents have in hands. Oraetamp aspect of imperfect-information
games is that not every strategy is “playable”. Indeed, geplaannot plan to play differently in sit-
uations that she is unable to distinguish. This is why playee required to use strategies that select
moves uniformly over observationally equivalent situasio This kind of strategies is sometimes called
uniform strategiesn the community of strategic logics ([29, 5, 19]), abservation-based strategies
the community of computer-science oriented game theo#y. (8 fact, all the additional complexity of
solving imperfect-information games, compared to periieitirmation ones, lies in this constraint put
on strategies.

We show that the notion of observation-based strategy, andehthe essence of games with imper-
fect information, can be easily embedded in our notion ofarni strategy. In two-player imperfect-
information games as studied for example in [26, 8, 7], Rldyenly partially observes the positions of
the game, such that some positions are indistinguishaltberavhile Player 2 has perfect information
(the asymmetry is due to the focus being on the existenceaitgies for Player 1). Arenas are labelled
directed graphs together with a finite setastions Act and in each round, if the position is a node
Player 1 chooses an available actmrand Player 2 chooses a next positibmeachable fronv through
ana-labelled edge.

We equivalently define this framework in a manner that fitssmiting by putting Player 1’s actions
inside the positions. We have two kinds of positions, of trenfv and of the form(v,a). In a positionv,
when she chooses an actianPlayer 1 actually moves to positigm a), then Player 2 moves froifv, a)
to somev. So an imperfect-information game arena is a structig = (¢, ~) where¥ = (V,E,vo,¢)
is a two-player game arena with positionsMp of the formv and positions iV, of the form (v,a).
We require thavE(V,a) impliesv =V, andv, € V4. For a position(v,a) € V,, we note(v,a).act := a.
We assume thap; € AP, and for every actiom in Act, p;, € AP. p; holds in positions belonging to
Player 1, ang, holds in positions of Player 2 where the last action choseRlayer 1 isa: ¢(v) = {p;}
for ve vy, ((v,a) = {pa} for (va) € V,. Finally, ~ C VZ is an observational equivalence relation on
positions, that relates positions indistinguishable flayBr 1. We define its extensian to finite plays:
Vo(Vo, &)V - - . (Vn—1,8n)Vn > Vo(Vo, &) )V] - .. (V1. an)V, if forall i > 0, v; ~ V. anda; = &.

We add the classic requirement that the same actions musgaltetde in indistinguishable positions:
forall v,V € Vy, if v~V thenvE(y,a) if, and only if, VE(V,a). In other words, if Player 1 has different
options, she can distinguish the positions.

Definition 2 A strategyo for Player 1 is observation-baset for all p,p’ € vp(VoV1)*, p = p’ implies
o(p).act=o(p’).act.

We define the formula
SameAct :=G(p1 — \/ ROpa)

acAct
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which, informally, expresses that whenever it is Playeitdra to play, there is an actiamthat is played
in every equivalent finite play.

Proposition 1 A strategyo for Player1is observation-based iff it i, SameAct)-strictly-uniform.

Here we have to make use of the notion of strict uniformity aat the full uniformity. Indeed, after
a finite playm0,i] ending inV;, we want to enforce that in all equivalent prefixes of infirptaysthat
conform to the strategy considerdelayer 1 plays the same action. It would obviously make meeséo
enforce the same on equivalent prefixes of every possibjeipthe game, which encompass all possible
behaviours of Player 1.

Notice that in order to embed the case of players with differaemory abilities,e.g.imperfect-
recall, one would just have to replasewith the appropriate relation.

For the moment we have not mentioned any winning conditian.afstrategy, beingr, SameAct)-
strictly-uniform only characterizes that it is “playabligt a player with imperfect information, but it does
not characterize the outcome of this strategy. Howevenéf@onsiders a game with imperfect informa-
tion in which the winning condition for Player 1 is an LTL fouta ¢, then the set of~, SameAct A ¢)-
strictly-uniform strategy is exactly the set of winning ebgtion-based strategy.

When talking about knowledge and strategic abilities, thestjon ofobjectivevs subjectiveability
should be raised (see [18]). The difference is basicallytivdrea strategy is defined only on “concrete”
plays, starting from the initial position, or if it has to befthed on all “plays” starting from any position
the player confuses with the initial one. In the setting entésd here, the initial position is part of the
description of the arena, hence players are assumed to kraowd iall plays considered start from this
position. But in order to model in this setting the case ofyBital not knowing the initial position, one
could add a fresh artificial initial positiovf, from which no matter the action Player 1 chooses, Player
2 can move to any position that Player 1 confuses withThen, for a winning conditiog € LTL, the
existence of an observation-based winning strategy fordPthfromvg (resp.v;;) would denote objective
(resp. subjective) ability to enforag.

4.2 Games with opacity condition

Games with opacity condition, studied in [23], are basedvamplayer imperfect-information arenas,
with Alice having perfect information as opposed to Bob wlastially observes positions. In such
games, some positions are “secret” as they reveal a critiftalnation that Bob aims at discovering. We
are interested in Alice’s ability to prevent Bob from “knowl’ the secret, in the epistemic sense.
More formally, assume that a propositiga € AP represents the secret. L€k = (¢4,~) be an
imperfect-information arena as described in Section 4if) & distinguished set of positior&SC V;
that denotes the secret. Bob is Player 1 as he has imperfeahition, and Alice is Player 2. Letting
¢ = (V,E,v,¢), we require that—*({ps}) = S(positions labeled bys are exactly positions € S). For
a finite playp with last(p) € Vi, Bob'sinformation sebor knowledgeafterp is | (p) := {last(p’) | p’ €
Plays,p ~ p’}. Itis the set of all the positions he considers possible afteervingp. An infinite play
is winning for Bob if there exists a finite prefix of this play whose information set is containedSn
i.e. 1(p) C S otherwise Alice wins. It can easily be shown that:

Proposition 2 A strategyo for Alice is winning if, and only ifg is (~, G—Rps)-fully-uniform.

Here we are interested in Alice’s strategies and Bob’s kedgé. Since Bob only partially observes
what Alice is playing, some plays that are not brought abguAlice’s strategy are considered possible
by Bob. Full uniformity is therefore the right notion to cape correctly Bob’s knowledge.
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Here again, to model different memory and observationditiaksiof Bob, one can use the appropriate
binary relation, provided it is rational. Also, notice titlabugh we chose to illustrate our framework with
opacity aspects, any winning condition that is expresdilgla formula of the epistemic linear temporal
logic with one knowledge operator would fit in our setting.

5 Synthesizing fully-uniform strategies

In this section, we investigate the complexity of synthesjz fully-uniform strategy. We first consider
the associated decision problem, called herdute-uniform strategy problengiven a uniform property
¢ € RLTL, afinite aren&? = (V,E,vp, /), and a finite state transduc€rover alphabeV representing a
rational binary relation between plays (see [6]), doesetleaiist a([T], ¢ )-fully-uniform strategy inZ,
where[T] is the binary relation denoted Hy.

Definition 3 For a formula¢ € RLTL, the Rdepthof ¢, written dr(¢), is the maximum number of
nested R modalities ift. For each ke N, we let R.TL, .= {¢ € RLTL | dr(¢) =k}.

Theorem 3 The fully-uniform strategy problem for formulas ranginggovy<, RLT Ly is N-EXPTIME-
complete for n> 2, and2ExPTIME-complete for r< 2.

The proof for the upper bounds in Theorem 3 can be found in [B2)hich we devise a decision
procedure based on a powerset construction which simulaesxecution of the transducer along plays
in the arena, enabling the computation of information s&saling with information sets enables us
to performR-modalities elimination, yielding a reduction of the iaitiproblem to solving someTL
game. The procedure is however non-elementary since itresgone powerset construction per nesting
of R-modalities. The proof for the matching lower bounds is @direduction from the word problem
for exp[n]-space bounded alternating Turing Machines, whidlnis 1)-ExXPTIME complete. Due to lack
of space, it is omitted here.

Corollary 4 The fully-uniform strategy problem is non-elementary cletep

Regarding the synthesis problem, the procedure of [25] dbrirsg the terminalLTL game in the
decision procedure of Theorem 3 is an effective constrnatioa winning strategy when it exists. This
strategy provides a fully-uniform strategy of the initi@rge, by means of a transducer mapping plays of
the initial game to plays in the terminal game. This transduiself is straightforwardly built from the
arena of the last game itself.

6 Discussion

We are currently working on sufficient conditions on the bjneelation between plays to render the
fully-uniform strategy synthesis problem elementary.pp@ars that being an equivalence relation is not
enough, but if moreover the relation verifies a weak formmfearningproperty (see [14]), the problem
seems to be elementary. Concerning the strictly-uniforatesyy problem, we conjecture undecidability
in general, but we are investigating interesting subckasdeaational relations that make the problem
decidable.

It would then be interesting to extend the language to the casmodalitiesR; with nrelations~;.
Also, the difference between the fully-uniform semantiosl ¢ghe strictly-uniform one could be at the
level of modalities instead of the decision problems lewelSection 4.1 we have seen that uniformity
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properties can represeaniformity constraintson the set of elegible strategies, and in Section 4.2 we
have seen how they can represepistemic winning conditiongHowever, while some properties require
strict uniformity, others require full uniformity. Allowig to use both kinds of modalities in a formula
would enable, for example, to express that a strategy mubkth®winning for some condition on the
opponent’s knowledge (with a fully-uniform modality, seec8Bon 4.2), and to be observation based for
the player considered (with a strictly-uniform modality) formula of the following kind could be used
for a variant of games with opacity condition where Alice \Wbalso have imperfect information (note
that the arenas should be modified, and we assumepthabuld mark positions where Alice has to
choose an action):

#:= G(p2— \/Riiz"OPa) A GRggy'ps

acAct

Observation-based constraintWinning condition

In a next step, we would like to consider how our frameworkpasl# we take as base language the
one of Alternating-time Temporal Logic [2] instead of LTlg as to obtain an Alternating-time Temporal
Epistemic Logic-like language. It would enable us to exptée existence of uniform strategies directly
in the logic, and not only at the level of decision problemstas the case for now. This step will
require to pass from the two-player turn-based arenasaeresl so far to multiplayer concurrent game
structures, that are ATL models, but the definitions shodipawithout difficulties. However we should
be cautious in generalizing these notions as undecidabhillt easily be attained.
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