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ABSTRACT
Argumentation-based frameworks are used as a decision-making

mechanism for software agents. This paper aims to investigate how

a formal argumentation framework is affected when the underly-

ing causal relationships of its theory is modified in counterfactual

situations, the so-called “what if ” scenarios. In contrast to previous

approaches where causality relationships were derived from static

probabilistic distributions, we address scenarios where causal mod-

els are intervened. Two novel contributions in the synergy between

argumentation and causal theories are presented: 1) we character-

ize interventions and their consequences in causal argumentation

frameworks; and 2) we introduce an account of the so-called se-
quential interventions that give a characterization of manipulations

on time.
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1 MOTIVATION
Causal models are mathematical objects that provide interpretations

of queries about a specific domain [7]. Submodels intended as the

realization of a particular variable are useful for representing the

effect of specific local actions, the so-called interventions, which
answer questions such as “what would happen if physical activities
are increased in a person with pre-diabetes?”.

The generation of consistent scenarios given a probabilistic dis-

tribution from a causal model, has substantial research in the ar-
gumentation theory literature (see for example [10, 11]). However,

during an intervention the underlying probabilistic distribution

changes, and individual probabilities for those intervened variables

are non-identifiable, that is, non-estimable from frequency data

alone [17]. The aim of this paper is to provide a first characteriza-

tion of the effects of causal models interventions on argumentation

frameworks. We depart from general axiomatizations of causal

models [6, 7, 9] and from an argumentation theory perspective of

deductive systems (see [2, 5, 8]).
Our contributions are summarized as follows:

• We introduce a characterization of interventions and how

those affect causal argumentation frameworks.
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• We provide an account of sequential interventions, which

provides a characterization of manipulations on time.

Additionally, we exemplify our theoretical findings using statistical

data from a large database (more than 12 million of registers) of

human activity behavior in northern Sweden [12].

2 FRAMEWORK FOR BUILDING CONSISTENT
CAUSAL SCENARIOS

This section presents our framework for building consistent causal

scenarios.

A causal model is a triple𝑀 = ⟨𝑈 ,𝑉 , 𝐹 ⟩ where𝑈 and 𝑉 are sets

of exogenous and endogenous variables respectively, and 𝐹 is a set

of functions from 𝑈 ∪ 𝑉 . See additional syntax details in [7]. A

mapping from causal model’s variables (structural equations) to a

propositional languageL, allows us to form a theory Σwhere atoms

of the form 𝑥1, 𝑦1 can build complex structures (statements) about

a particular causal hypothesis using basic operations: ∧ (conjunc-

tion), ¬ (negation) and ⊢ (logical inference). We denote a mapped

variable with the character (
∗
). Additionally, we use the symbol ⊢𝑐

to represent a causal entailment that fulfills a set of axioms [7].

We introduce a framework called CLAIM: Causal argumentation

framework, to generate sets of consistent hypotheses from a causal

model that is intervened.

Definition 1 (CLAIM). A CLAIM framework is a tuple ⟨Σ, 𝑃⟩
where Σ ⊆ 𝑈 ∗ ∪ 𝑉 ∗ and 𝑈 ∗,𝑉 ∗ are mappings from variables of a
causal model𝑀 = ⟨𝑈 ,𝑉 , 𝐹𝑥⟩ to atoms in L.

We can use argumentation theory in a CLAIM to build consistent

scenarios from individual argument-based structures that we call

causal hypothesis 𝑐ℎ𝑦𝑝s that are tuples 𝑐ℎ𝑦𝑝 = ⟨𝑆, 𝜎, 𝑃𝜎′ ⟩, fulfilling
next conditions: 1) 𝑆 ⊆ 𝐴; 2) 𝑆 is consistent; 3) 𝑆 ⊢ 𝜎 ; 4) 𝑆 ⊢𝑐 𝜎 ;

and 5) �𝑆 ′ ⊂ 𝑆 such that 𝑆
′ ⊢ 𝜎 . Where 𝑆 is called support and the

tuple (𝜎, 𝑃𝜎′ ) is the conclusion. Condition 3 and 4 ensure that 𝜎 is

caused and logically inferred from a support 𝑆 . A violation of these

conditions may lead to a deductive correlation without causation.

Example (Causal hypotheses of PRED). Figure 1 presents a sub-

set of causal variables for prediabetes. Two additional exogenous

variables𝑈1 and𝑈2 are linked to the initial graph; these exogenous

variables can be seen background (not measured) information, e.g.
social or environmental aspects. From these structural equations,

seven causal hypotheses can be built:

𝑐ℎ𝑦𝑝1 = ⟨{𝑢1 }, (𝑢1, 𝑃𝑢1
) ⟩

. . .

𝑐ℎ𝑦𝑝6 = ⟨{𝐴𝑔𝑒 ∧𝑢2 ∧𝑢𝐴𝑔𝑒 }, (𝐴𝑔𝑒, 𝑃𝐴𝑔𝑒 ) ⟩
𝑐ℎ𝑦𝑝7 = ⟨{𝑢𝑃𝑅𝐸𝐷 ∧𝑂𝑏𝑒 }︸              ︷︷              ︸

𝑠𝑢𝑝𝑝𝑜𝑟𝑡

, (𝑃𝑅𝐸𝐷, 𝑃𝑃𝑅𝐸𝐷 )︸               ︷︷               ︸
𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛

⟩



PRED
PRED
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c)b)a)

Figure 1: a) Causal graph of prediabetes (adapted from VIP data [12]); b) structural equations for prediabetes risk factors; c)
double intervention of physical activity and alcohol variables.

A 𝑐ℎ𝑦𝑝7 = ⟨{𝑢𝑃𝑅𝐸𝐷 ∧ 𝑂𝑏𝑒}, (𝑃𝑅𝐸𝐷, 𝑃𝑃𝑅𝐸𝐷 )⟩ has an intuitive

reading: “There is a causal and deductive relationship between obesity
and PRED with a probability of 𝑃𝑃𝑅𝐸𝐷 ”. Let us denote Cℎ(Σ), the
set of all causal hypotheses built from Σ.When a variable is manipu-

lated, logical incompatibilities may emerge in the submodel [7, 15],

e.g. a specific physical disability preventing a person from being

active, could be considered as incompatible with an intervention

𝑑𝑜 (𝑃ℎ𝑎 = ℎ𝑖𝑔ℎ), i.e. “what if a person increases her/his physical ac-
tivity level?” (see Figure 1). This type of specific conflicts leads us
to the notion of hypothesis attack, i.e. having 𝑐ℎ𝑦𝑝1, 𝑐ℎ𝑦𝑝2 ∈ Cℎ,
we say that 𝑐ℎ𝑦𝑝1 attacks 𝑐ℎ𝑦𝑝2 iff. i) ∃ 𝜎 ∈ Supp(𝑐ℎ𝑦𝑝2) s.t.

𝜎 ≡ ¬Conc(𝑐ℎ𝑦𝑝1), and/or ii) Conc(𝑐ℎ𝑦𝑝2) ≡ ¬Conc(𝑐ℎ𝑦𝑝1). We

use a function att(𝑐ℎ𝑦𝑝𝑎, 𝑐ℎ𝑦𝑝𝑏 ) that represents any type (i or ii)
of attack from 𝑐ℎ𝑦𝑝𝑎 to 𝑐ℎ𝑦𝑝𝑏 . A graph where causal hypotheses

(𝑐ℎ𝑦𝑝𝑠) are nodes, and attack relationships are edges will be called

a causal argumentation framework 𝐶𝐴𝐹 = (Cℎ,→,P), where the
arrow→⊆ Cℎ×Cℎ represents all the attack relationships in a CAF,

and P is the underlying probabilistic evidence sporting the causal

model.

3 EFFECTS OF CAUSAL INTERVENTIONS IN
ARGUMENTATION FRAMEWORKS

A causal intervention impacts a CAF in two ways: 1) it may intro-

duce new relations of (deductive or causal) attacks between 𝑐ℎ𝑦𝑝s,

and 2) the underlying probability distribution changes given the

intervention (variables affected by a counterfactual manipulation

are those descendants of such manipulated variable). We denote

an intervened CAF as 𝐶𝐴𝐹𝑥 w.r.t. a 𝑥 ∈ 𝑀𝑥 . For example, action

𝑑𝑜 (𝑃ℎ𝑎 = ℎ𝑖𝑔ℎ) will affect the conditional probabilities of 𝑃ℎ𝑎

descendants, but the effect of 𝐴𝑔𝑒 (its parent) will remain invariant.

Proposition 1 (Probability independent argument struc-

tures). During an intervention of a causal model, individual proba-
bilities of the intervened variable’s parents are not affected, therefore
probabilities of argument-based structures linked to those parents are
invariant and definable.

Even when a causal model follows a Markov characteristic [13],

individual probabilities of 𝑐ℎ𝑦𝑝𝑠 are non-identifiable, then maxi-

mum and minimum boundaries (𝑃 = [𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥 ]) of the causal
inference can be defined for those argument-based children affected

by the intervention (see [14, 17] for more details).

Proposition 2. Let𝐶𝐴𝐹𝑥 be an intervened causal argumentation
framework, the individual probability of every 𝑐ℎ𝑦𝑝 ∈ 𝐶𝐴𝐹𝑥 , may
not be estimable from frequency data alone.

A straightforward consequence for argument-based structures

during an intervention, is that probability of those structures asso-

ciated to the intervened variables’ parents are not affected.

Corollary 1. In a𝐶𝐴𝐹𝑥 the probability of argument-based struc-
tures associated to the intervened variable’s parents is not affected
and it is identifiable.

Proposition 3 (Change in probability distribution of argu-

mentation frameworks). Let𝐶𝐴𝐹 and𝐶𝐴𝐹𝑥 be a causal argumen-
tation framework and its intervened version when 𝑋 is manipulated.
The probability distributions associated to 𝐶𝐴𝐹 and 𝐶𝐴𝐹𝑥 are dif-
ferent, then for every causal argument structure except its parents, a
re-computation of individual probabilities are necessary.

In sequential interventions [16] (e.g.𝑑𝑜 (𝑃ℎ𝑎 = ℎ𝑖𝑔ℎ) then𝑑𝑜 (𝐴𝑙𝑐 =
ℎ𝑖𝑔ℎ)), we can prove that the joint effect of sequential interventions

in a CAF is the same as if we perform individual interventions

successively.

Proposition 4 (Seqential interventions inCAFs). Let𝑋,𝑌 ∈
𝑀 be two variables in the causal model𝑀 , and let𝐶𝐴𝐹𝑋 ∗ and𝐶𝐴𝐹𝑌 ∗

two interventions in𝑋,𝑌 respectively. The set of extensions in a sequen-
tial intervention 𝐶𝐴𝐹𝑋 ∗,𝑌 ∗ is the same as a joint effect of separated
interventions 𝐶𝐴𝐹𝑋 ∗ then 𝐶𝐴𝐹𝑌 ∗ , or conversely, iff the set of causal
hypotheses of pre-intervention 𝐶𝐴𝐹 remains invariable.

The relevance of Proposition 4 can be seen when different inter-

ventions are applied in distinct time points in the same CAF.

4 CONCLUSIONS
We present a novel characterization of causal interventions in argu-

mentation frameworks that opens the path to revisit some formal

concepts of deductive systems from the perspective of causal the-

ory. We made a first step to make a general conceptualization of

counterfactuals in formal argumentation theory. We also report the

current design and test of a tool implementing these theoretical

approaches.

Our future work will be focused on three aspects: 1) the ful-

fillment of abstract axioms from deductive systems [1, 3, 4, 8]

and causal inference [7]; and 2) the exploration of sequential and

time-related interventions considering probabilistic argumentation

frameworks.
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