
DQPTL: DependencyQuantified Propositional Linear-time
Temporal Logic
Anonymous Author(s)

Submission Id: 8
ABSTRACT
We present an approach to specify the information flow be-
tween players in a concurrent game with LTL objectives. We
use a dependency matrix D to reflect this information flow.
On this basis, we define the so-called Dependency Quantified
Propositional Linear-time Temporal Logic (DQPTL) whose for-
mulae are of the formD∃®𝑝𝜑 , whereD is a dependency matrix,
∃®𝑝 informs which players form the coalition and 𝜑 is an LTL
formula, whose semantics is a concurrent game. We show
that our setting captures the standard semantics of Quantified
Propositional Linear-time Temporal Logic (QPTL), for some
adequate matrices D. Moreover, we provide an effective cri-
terion to decide if a DQPTL formula is consistent in the sense
that the concurrent game yields an entire labeling of the time
line, so that the winning condition 𝜑 can be evaluated.

KEYWORDS
Temporal logic, Dependency, Multiplayer Games

ACM Reference Format:
Anonymous Author(s). 2021. DQPTL: Dependency Quantified Propo-
sitional Linear-time Temporal Logic. In Proc. of the 20th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2021), London, UK, May 3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
Quantifiers in logic naturally yield a game semantics between
existential and universal players. In the setting of strategic
reasoning, such as Alternating-time Temporal Logic [1] or
Strategy Logic [2], the quantifiers apply on strategies and the
coarse-grained skolemization mechanism from classical logic
is not adequate to reflect subtle dependencies, as noticed by
[3, 4]. For example, while the Quantified Propositional Linear-
time Temporal Logic (QPTL) [5] formula ∃𝑎∀𝑏 (𝑎 ↔ X𝑏) is not
satisfiable, as Player 𝑎 has no information about how Player 𝑏
will label the timeline with proposition 𝑏, there might exist
a strategy of Player 𝑎 if she would be informed about how
Player 𝑏 labels the next time point.

In this contribution, we approach these considerations by
studying the simple setting of such games on the timeline with
LTL objectives. We designDependency Quantified Propositional
Linear-time Temporal Logic (DQPTL) where the information
flow between players is made explicit through a dependency
matrix D. Atomic formulae of DQPTL are of the form D∃®𝑝𝜑
orD∀®𝑝𝜑 , whereD is a dependency matrix, ®𝑝 is a list of propo-
sitions, and 𝜑 is an LTL-formula. General DQPTL formulae
are Boolean combinations of atomic DQPTL formulae. The

Proc. of the 20th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May
3–7, 2021, London, UK. © 2021 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

semantics of a DQPTL atomic formula D∃®𝑝𝜑 is provided as
a concurrent game. In the arena of this game, called meta
arena, a player is in charge of incrementally labeling the time-
line with the unique proposition she owns, provided she has
enough information about other players moves as specified by
the dependency matrix D. Any (possibly infinite) play where
every player has achieved the full labeling of the timeline
thus describes a model to evaluate winning condition 𝜑 . The
roadmap consists in defining dependency matrices and the as-
sociated meta arena. We distinguish progressing dependency
matrices whose plays in the associated so-called progressing
arena yield an entire labeling of the timeline. Incidentally, we
provide a polynomial-time decision procedure to characterize
progressing dependency matrices, based on the existence of an
absorbing cycle in a graph derived from the matrix. We then
trun to the full definition of the logic DQPTL, that preliminary
requires a tuned notion of uniform strategies in the meta arena.
Finally, we show an embedding of QPTL with the standard
semantics of [5] into DQPTL.

From now on, we fix an infinite set of propositions AP.

2 DEPENDENCY MATRICES
In our setting, a player is responsible for a single atomic propo-
sition. A dependency matrix specifies dependencies between
player moves.

Definition 1. A dependency matrix over AP is a finite-
dimensional matrixD = (D[𝑎, 𝑏])𝑎,𝑏∈P, for some finite P ⊆ AP,
and whose coefficients range over Z ∪ {±∞}.

Intuitively, D[𝑎, 𝑏] ∈ Z ∪ {±∞} expresses the constraint
that Player 𝑎 cannot choose the 𝑎-labeling at time point 𝑡 if
she is not informed about the 𝑏-labeling made by Player 𝑏 up
to time point 𝑡 + D[𝑎, 𝑏]. In particular, it is natural to require
thatD[𝑑,𝑑] = −1 for every Player 𝑑 to reflect that each player
is perfect recall. Also, setting D[𝑎, 𝑏] = −∞ expresses that
Player 𝑎 plays independently of Player 𝑏, and finally setting
D[𝑎, 𝑏] = +∞ means that Player 𝑎 makes her choice on the
basis of Player 𝑏’s labeling of the whole timeline.

One may also look at dependency matrices as a way to con-
currently fill the timeline where some players may announce
their moves in advance, a kind of commitment. Suppose that
(1) Alice privately announces her next move to Bob and her
two next moves to Carol; (2) Bob is informed about one time
point ahead regarding Alice’s labeling and about the current
time point regarding Carol’s labeling; (3) Carol is not informed
at all about how the two others put their labels. The situation
is reflected by the dependency matrix of Fig. 1.

A given dependency matrixD can be seen as a seed to start
playing in the so-called meta arena AD that we now describe.



AAMAS ’21, May 3–7, 2021, London, UK Anon. Submission Id: 8

3 THE META ARENA AD
In the rest of the paper, we fix a dependency matrix D. A
position in the associated meta arena AD is a labeling of
the timeline by each player of P on a section of the timeline
starting from the initial time point 0 up to some time point
(possibly +∞) called the advancement of the player, and that
may differ between players. In the initial position of the arena,
the advancement of each player is −1, namely no time point
has been labeled yet by any of the players.

The dynamics of the arena is based on the successive up-
dates of the dependency matrix in such a way that in a position
with advancement 𝑡𝑑 for each Player 𝑑 , we have:

D ′[𝑎, 𝑏] = 𝑡𝑎 + D[𝑎, 𝑏] − 𝑡𝑏 (1)

for any pair of Players 𝑎 and 𝑏. With such an update D ′, we
can identify every Player 𝑎 who can progress, namely who can
increase her advancement by choosing the 𝑎-labeling at time
point 𝑡𝑎+1. Those players have only strictly negative values on
their corresponding line in thematrixD ′: indeed, by definition
ofD, in order to label time point 𝑡𝑎 +1, Player 𝑎 needs Player 𝑏
to have played at least up to time point 𝑡𝑎 + 1 + D[𝑎, 𝑏], that
is 𝑡𝑏 ≥ 𝑡𝑎 + 1 + D[𝑎, 𝑏], hence 𝑡𝑏 > 𝑡𝑎 + D[𝑎, 𝑏], so that
D ′[𝑎, 𝑏] < 0. Since this constraint is required for any other
Player 𝑏, this results in a strictly negative valued line 𝑎 in D ′.

When Player 𝑎 labels time point 𝑡𝑎 + 1, her advancement is
increased which requires an update of matrix D ′ to maintain
invariant (1): one can easily establish that the update amounts
to uniformly increase by 1 line 𝑎 and to uniformly decrease
by 1 column 𝑎.

Notice that players can progress concurrently, allowing for
concurrent moves in the meta arena.

We define a concurrent move in AD as the concurrent
progress of all players able to do so. Note that there are as
many moves as labeling choices of progressing players.

For the matrix of Fig. 1, both Player 𝑎 and Player 𝑐 can
progress, ending up with the updated matrix below.

D ′ =
©­­­«

𝑎 𝑏 𝑐

𝑎 −1 0 −2
𝑏 0 −1 −1
𝑐 −∞ −∞ −1

ª®®®¬
However, from this updated matrix, Players 𝑎 and Player 𝑏

can no longer progress in AD . Even if Player 𝑐 can keep
progressing for ever, this prevents the play from defining a
labeling of the timeline for all propositions. Such blocking
situation is investigated in the next section.

4 PROGRESSING DEPENDENCY MATRIX
We are only interested in meta arenas where in every (possibly
infinite) play yields a full labeling of the time line, otherwise
said where the advancement of each player is unbounded.

Such arenas can be characterized by a so-called progressing
property of their dependency matrix as follows. Each depen-
dency matrix is assigned a weighted graph, called the depen-
dency graph, whose generic construction is omitted here, due
to lack of space, but exemplified (see Fig. 1). This graph has a
size polynomial in the size of the matrix. An absorbing cycle in
a dependency graph is a cycle whose weight is non-positive.

Proposition 1. A dependency matrix has the progressing
property iff its dependency graph has no absorbing cycle. As a
consequence, deciding the progressing property takes polynomial
time.

©­­­«
𝑎 𝑏 𝑐

𝑎 −1 −1 −2
𝑏 1 −1 0
𝑐 −∞ −∞ −1

ª®®®¬
𝑎 𝑏

𝑐

−1
2

1

0

Figure 1: A dependency matrix on the left, and its de-
pendency graph 𝐺 on the right. Because of the absorb-
ing cycle (𝑎, 𝑏, 𝑎) in𝐺 , Players𝑎 and𝑏 will inevitably stop
progressing for ever in AD .

While progressing meta arenas ensure that a player has
enough information to choose her labeling, we need to cir-
cumvent the legitimate amount of information a player can
rely on, so that the entire machinery faithfully reflects the
dependencies specified in the matrix.

5 UNIFORM STRATEGIES
Classically, a strategy is a mapping from histories to moves.
Note that in a meta arena, a position contains all the label-
ing choices made by all players so far (up to their respective
advancement along the timeline). Additionally, given a posi-
tion, one can reconstruct the entire history by resorting to
the dependency matrix. It seems therefore relevant to define a
strategy as a mapping from positions to moves, where a move
of Player 𝑎 is some Boolean value for proposition 𝑎 at time
point 𝑡𝑎 + 1 if she has enough information according to D;
otherwise the move is 𝜀.

However, for a strategy to rely only on the legitimate in-
formation Player 𝑎 has access to (as specified by D), it needs
being uniform: the strategy should output the same move for
any two positions 𝑣1, 𝑣2 such that for every other Player 𝑏, it
holds that 𝑣1 (𝑏) (𝑡) = 𝑣2 (𝑏) (𝑡) for all 𝑡 ≤ 𝑡𝑎 + D[𝑎, 𝑏] where
𝑣 (𝑏) (𝑡) is the truth value of 𝑏 at time point 𝑡 in 𝑣 .

6 SYNTAX AND SEMANTICS OF DQPTL
The syntax of DQPTL is given by𝜙 ::= D∃®𝑝𝜑 | D∀®𝑝𝜑 | ¬𝜙 | 𝜙∧
𝜙 ′, where D is a progressing dependency matrix over the
propositions of 𝜑 ∈ LTL, and ®𝑝 ⊆ AP. We only give the se-
mantics of DQPTL atomic formulae.

• D∃®𝑝𝜑 holds iff there is a joint strategy D uniform for
coalition ®𝑝 in AD whose outcomes satisfy 𝜑 ,

• D∀®𝑝𝜑 holds iff the outcomes of any joint strategy D
uniform for coalition ®𝑝 in AD satisfy 𝜑 .

Sentences of QPTL can be effectively translated into DQPTL
in polynomial time: Take for instance theQPTL formula∃𝑎 ∀𝑏 𝜑
(without loss of generalities, QPTL formulae in prenex form
suffice). The DQPTL formula associated is D∃{𝑎}𝜑 with

D =
©­«

𝑎 𝑏

𝑎 −∞ −∞
𝑏 +∞ −∞

ª®¬ .



AAMAS-2021 Formatting Instructions AAMAS ’21, May 3–7, 2021, London, UK

REFERENCES
[1] Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. Alternating-time

temporal logic. Journal of the ACM (JACM), 49(5):672–713, 2002.
[2] Krishnendu Chatterjee, Thomas A Henzinger, and Nir Piterman. Strategy

logic. Information and Computation, 208(6):677–693, 2010.
[3] Patrick Gardy. Semantics of Strategy Logic. Theses, Université Paris-Saclay,

June 2017.

[4] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y Vardi. Rea-
soning about strategies: On the model-checking problem. ACM Transactions
on Computational Logic (TOCL), 15(4):34, 2014.

[5] A Prasad Sistla, Moshe Y Vardi, and Pierre Wolper. The complementation
problem for büchi automata with applications to temporal logic. Theoretical
Computer Science, 49(2-3):217–237, 1987.


	Abstract
	1 Introduction
	2 Dependency matrices
	3 The meta arena 
	4 Progressing dependency matrix
	5 Uniform Strategies
	6 Syntax and semantics of DQPTL
	References

