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ABSTRACT
Multi-player mean-payoff games are a natural formalism for mod-
elling the behaviour of concurrent and multi-agent systems with
self-interested players. Players in such a game traverse a graph,
while trying to maximise a mean-payoff function that depends on
the plays so generated. As with all games, the equilibria that could
arise may have undesirable properties. However, as system design-
ers, we typically wish to ensure that equilibria in such systems
correspond to desirable system behaviours, for example, satisfying
certain safety or liveness properties. One natural way to do this
would be to specify such desirable properties using temporal logic.
Unfortunately, the use of temporal logic specifications causes game
theoretic verification problems to have very high computational
complexity. To this end, we consider𝜔-regular specifications, which
offer a concise and intuitive way of specifying desirable behaviours
of a system. The main results of this work are characterisation
and complexity bounds for the problem of determining if there are
equilibria that satisfy a given 𝜔-regular specification in a multi-
player mean-payoff game in a number of computationally relevant
game-theoretic settings.
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1 INTRODUCTION
Modelling concurrent and multi-agent systems as games in which
players interact by taking actions in pursuit of their preferences
is an increasingly common approach in both formal verification
and artificial intelligence [1, 2, 12]. One widely adopted semantic
framework for modelling such systems is that of concurrent game
structures [2]. On top of this framework, we can impose additional
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structure to represent each player’s preferences over the possi-
ble runs of the system. In this paper, we assign a weight to every
state of the game, and then consider each player’s mean-payoff
over generated runs: a player prefers runs that give them a greater
mean-payoff [6, 16, 18]. These games are effective in modelling
resource-bounded reactive systems, as well as any scenario with
multiple agents and quantitative features. Under the assumption
that each agent in the system is acting rationally, concepts from
game theory offer a natural framework for understanding its possi-
ble behaviours [14]. This approach is expressive enough to capture
applications of interest, and has been receiving increasing attention
recently [5]. As such, equilibria for multi-player games with mean-
payoff objectives are well studied, and the computation of Nash
equilibria in such games has been shown to be NP-complete [16].

However, a given game-theoretic equilibrium may have undesir-
able computational properties from the point of view of a system
designer. An equilibrium may visit dangerous states, or get stuck
in a deadlock. Thus, one may also want to check if there exist equi-
libria which satisfy some additional desirable properties associated
with the game. This problem — determining whether a given formal
specification is satisfied on some/every equilibrium of a multi-agent
system — is known as Rational Verification [8, 17].

Previous approaches to rational verification have borrowed their
methodology from temporal logic model checking. However, since
rational verification subsumes automated synthesis, the use of tem-
poral logic specifications introduces high computational complex-
ity [15]. To mitigate this problem, one might use fragments of
temporal logic with lower complexity (e.g., GR(1) [4, 11]), but in
this work we adopt a different approach. Taking inspiration from
automata theory, and in particular from [3], we consider system
specifications given by a formal language for expressing 𝜔-regular
specifications. With this approach, the complexity of the main game-
theoretic decision problems is considerably lower than in the case
with temporal logic specifications.

In this paper, we offer the following main contributions: we
introduce a syntax for 𝜔-regular specifications and demonstrate
they are a natural construct for reasoning qualitatively about con-
current games. We then study multi-player mean-payoff games
with 𝜔-regular specifications in the non-cooperative setting [14],
and consider the natural decision problems relating to these games
and their Nash equilibria. Following this, we take inspiration from
cooperative game theory and look at equivalent decision problems
with respect to a cooperative solution concept derived from the
core [10, 14]. Finally, we look at reactive module games [9] as a
way of inducing succinctness in our system representations, and
look at how this affects our established complexity results.



Problem Complexity

Memoryless Nash
Membership P upper bound

Memoryless E-Nash NP-complete

E-Nash NP-complete

Memoryless Core
Membership co-NP complete

Memoryless E-Core Σ𝑃2 upper bound

E-Core Σ𝑃2 -hard

WRMG E-Nash NEXPTIME upper bound
and EXPTIME-hard

Table 1: Summary of main results

2 GAMES, SPECIFICATIONS AND DECISION
PROBLEMS

As mentioned previously, we use concurrent game structures [2] as
our model for games. Informally, these consist of a set of agents,
each with a set of actions, a set of states and a transition function
which given a state, along with an action for each player, provides
a new state for the game. These games are played out by repeatedly
having each player choose an action, and moving the game to a
new state as dictated by the transition function. Additionally, each
state of the game has a vector of weights attached to it, one for
each player. We define themean-payoff of a player to be the lim inf
of the average of the weights attached to the states visited; players
prefer runs which give them a larger mean-payoff. Finally, we
model player behaviour using strategies — arbitrary mathematical
functions mapping histories of states to actions. In addition to being
interested in functions in their full mathematical generality, we also
consider memoryless and finite memory strategies. With our game
model set, we are interested inwhat outcomeswill emergewhen our
players act rationally. One natural way of doing this is to use solution
concepts from game theory, and we are particularly interested in
two of them: the Nash equilibrium [13] and the core [10]. The Nash
equilibrium consists of those strategy profiles which are invariant to
unilateral deviations, and the core consists of those strategy profiles
which are invariant to multilateral deviations, under the assumption
that the remaining players could also change their action when
faced with a deviation. Nash equilibria are well-known in non-
cooperative game theory, but the core is a concept borrowed from
cooperative game theory. Both of these solution concepts capture a
notion of ‘stable’ behaviour.

One problem is that even if a strategy profile is a Nash equilib-
rium, or it lies in the core, despite its ‘stability’, it may still have
socially undesirable properties. Thus, we are not solely interested
in the Nash equilibria or the core of the game — we are interested in
those members of them which satisfy certain desirable properties.
This problem is called Rational Verification [8, 17]. Traditionally,
temporal logic specifications are used to describe the desired ex-
ecutions of a system. One problem with this is that it has a high
computational overhead — computing if a mean-payoff game has a

Nash equilibrium is NP-complete [16], whilst determining if a mean-
payoff game has a Nash equilibrium which models a given LTL
specification is PSPACE-complete [11]. Thus, we look for a more
computationally amenable way of specifying system behaviours.
We do this by introducing 𝜔-regular specifications, borrowing the
syntax of [3]. These consist of Boolean combinations of atoms of
the form Inf(𝐹 ), where 𝐹 is some set of states. Semantically, these
specifications describe the sets of states that are visited infinitely
(or finitely) often in a natural way. For instance, in a game with the
states {𝑠1, 𝑠2, 𝑠3}, the following 𝜔-regular specification,

Inf({𝑠1, 𝑠2}) ∨ Fin({𝑠2, 𝑠3}),
describes those runs of the game which either visits 𝑠1 and 𝑠2 infin-
itely often or visits 𝑠2 and 𝑠3 finitely often. Using this syntax (and
potentially using a product construction), we can succinctly and
naturally describe all 𝜔-regular behaviours of a system, from Büchi
to Muller to Parity conditions. We also note that our 𝜔-regular
specifications are equivalent to Emerson-Lei conditions [7], albeit
with a different syntax.

With this machinery in place, there are two key decision prob-
lems of interest. The first problem asks, given a game, a strategy
profile, a solution concept, and an 𝜔-regular specification, is the
given strategy profile a member of the given solution concept, and
does it satisfy the specification? We call this problem the Mem-
bership problem, and we can consider finite-memory strategies, or
restrict our attention to memoryless strategies. The second problem
asks, given a game, a solution concept and an 𝜔-regular specifica-
tion, whether there exists some member of the solution concept
which models the specification. We call this the E-Nash(/E-Core)
problem. We analysed this problems in the setting of concurrent
game structures, and well as in the succinctly represented model of
weighted reactive module games (WRMGs) [9]. Our results are as
in Table 1. In addition to this, we have also established a number
of results which offer characterisations of these games and offer
insight into the sort of behaviours they can display.

3 CONCLUDING REMARKS
In this paper we introduced𝜔-regular specifications as a natural, ex-
pressive, computationally tractable way of reasoning qualitatively
about concurrent games. In particular, we establish several results
within the rational verification framework, the most important of
which are the complexity bounds for the E-NASH, E-CORE and
WRMG-E-NASH problems. Moving forward, we would like to
determine some of the bounds missing from Table 1, and following
this, there are other directions that appear to be fruitful; for exam-
ple, introducing both imperfect information and nondeterminism
offers a closer approximation to real-world systems and we are also
interested in using𝜔-regular specifications to understand𝜔-regular
games in a unified, principled way.
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