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ABSTRACT
The problem of finding pure strategy Nash equilibria in multiagent

concurrent games with finite-horizon temporal goals has received

some recent attention. Earlier work solved this problem through

the use of Rabin automata. In this work, we take advantage of the

finite-horizon nature of the agents’ goals and show that checking

for and finding pure strategy Nash equilibria can be done using a

combination of safety games and lasso testing in Büchi automata.

To separate strategic reasoning from temporal reasoning, we model

agents’ goals by deterministic finite-word automata (DFAs), since

finite-horizon logics such as LTL
f
and LDL

f
are reasoned about

through conversion to equivalent DFAs. This allow us characterize

the complexity of the problem as PSPACE complete.
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1 INTRODUCTION
Game theory provides a powerful framework for modeling prob-

lems in system design and verification [4, 8, 17]. In particular, two-

player games have been used in synthesis problems for temporal

logics [14]. In these games, one player takes on the role of the sys-

tem that tries to realize a property and the other takes on the role

of the environment that tries to falsify the property. Within the

scope of multiplayer games, two-player zero-sum games are the

easiest to analyze, since they are purely adversarial – there is no

reason for either player to do anything but maximize their own

utility at the expense of the other.

When there are multiple agents with multiple goals, pure an-

tagonism is not a reasonable assumption [19]. Concurrent games
are a fundamental model of such multiagent systems [1, 11]. Iter-
ated Boolean Games (iBG) [5] are a restriction of concurrent games

introduced in part to generalize temporal synthesis problems to

the multiagent setting. In an iBG, each agent has a temporal goal,

usually expressed in Linear Time Temporal Logic (LTL) [13], and is

given control over a unique set of boolean variables. At each time

step, the agents collectively decide a setting to all boolean variables

by individually and concurrently assigning values to their own
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variables. This creates an infinite sequence of boolean assignments

(a trace) that is used to determined which goals are satisfied and

which are not [5]. In this paper, we generalize the iBG formalism

slightly to admit arbitrary finite alphabets rather than just truth

assignments to boolean variables, as discussed below.

The concept of theNash Equilibrium [12] is widely accepted as an

important notion of a solution in multiagent games and represents a

situation where agents cannot improve their outcomes unilaterally.

In this paper we consider deterministic agents, and therefore the

notion of a Nash equilibrium in this paper that of pure strategy

Nash equilibrium [16]. While the problem of finding Nash equilibria

in an iBG where the agents have infinite-horizon temporal goals is

well studied, the analogous problem with finite-horizon temporal

goals has only recently received attention [6]. In that work the

automated equilibrium analysis is done through reasoning about

automata on infinite words, specifically, Rabin automata. In this

work we use simpler constructions - both safety games and Büchi
automata.

Here we address a more abstract version of the multi-agent finite-

horizon temporal-equilibrium problem by analyzing concurrent

iterated games in which each agent is given their own Deterministic
Finite Word Automata (DFA) goal. The reason for this is twofold.

First, essentially all finite-horizon temporal logics are reasoned

about through conversion to equivalent DFA, including the pop-

ular logics LTL
f
and LDL

f
[2, 3]. Thus, using DFA goals offers us

a general way of dealing with a variety of temporal formalisms.

Furthermore, using DFA goals enables us to separate the complexity

of temporal reasoning from the complexity of strategic reasoning.

Our focus on DFAs also ties in to a growing interest in DFAs as

graphical models that can be reasoned about directly in a number

of related fields; see [7, 10, 20] for a few examples in the context of

machine learning. In this work we prove that, once a set of agents𝑊

is fixed, determining whether a pure strategy Nash equilibrium in

which only the agents in𝑊 have their goals met exists is PSPACE-

complete. The reason why we use the set𝑊 is that we approach

the problem from the perspective of a system planner, and the set

𝑊 represents the agents whose goals we would like to see met.

2 CONCURRENT GAMES AND IBGS
A concurrent game structure (CGS) is an 8-tuple

(𝑃𝑟𝑜𝑝,Ω, (𝐴𝑖 )𝑖∈Ω, 𝑆, 𝜆, 𝜏, 𝑠0 ∈ 𝑆, (𝐴𝑖 )𝑖∈Ω)

where 𝑃𝑟𝑜𝑝 is a finite set of propositions, Ω = {0, . . . 𝑘 − 1} is

a finite set of agents, 𝐴𝑖 is a set of actions, where each 𝐴𝑖 is as-

sociated with an agent 𝑖 (we also construct the set of decisions
𝐷 = 𝐴0 ×𝐴1 . . . 𝐴𝑘−1, 𝑆 is a set of states, 𝜆 : 𝑆 → 2

𝑃𝑟𝑜𝑝
is a labeling

function that associates each state with a set of propositions that

are interpreted as true in that state, 𝜏 : 𝑆 ×𝐷 → 𝑆 is a deterministic

transition function that takes a state and a decision as input and



returns another state, 𝑠0 is a state in 𝑆 that serves as the initial state,
and𝐴𝑖

is a DFA associated with agent 𝑖 . A DFA𝐴𝑖
is denoted as the

goal of agent 𝑖 . Intuitively, agent 𝑖 prefers plays in the game that

satisfy 𝐴𝑖
, that is a play such that some finite prefix of the play is

accepted by 𝐴𝑖
. It is for this reason we refer to 𝐴𝑖

as a "goal".

We now define iterated boolean games (iBG), a restriction on

the CGS formalism. Our formulation is slight generalization of the

iBG framework introduced in [5], as we take the set of actions to

be a finite alphabet rather than a set of truth assignments since

we are interested in separating temporal reasoning from strategic

reasoning. An iBG is defined by applying the following restrictions

to the CGS formalism. Each agent 𝑖 is associated with its own

alphabet Σ𝑖 . These Σ𝑖 are disjoint and each Σ𝑖 serves as the set

of actions for agent 𝑖; an action for agent 𝑖 consists of choosing

a letter in Σ𝑖 . The set of decisions is then Σ =
>𝑘−1

𝑖=0 Σ𝑖 . The set
of states corresponds to the set of decisions Σ; there is a bijection
between the set of states and the set of decisions. The labeling

function mirrors the element of Σ associated with each state. As in

[5], we still have 𝜆(𝑠) = 𝑠 , but with 𝑠 ∈ Σ now. As a slight abuse

of notation, we consider the “proposition” 𝜎 ∈ Σ𝑖 for some 𝑖 to be

true at state 𝑠 if 𝜎 appears in 𝑠 , allowing us to generalize towards

arbitrary alphabets. Finally, the transition function 𝜏 is simply right

projection 𝜏 (𝑠, 𝑑) = 𝑑 .

Now, we introduce a few essential definitions.

Definition 2.1 (Strategy for agent 𝑖). A strategy for agent 𝑖 is a

function 𝜋𝑖 : 𝑆
∗ → 𝐴𝑖 . Intuitively, this is a function that, given the

observed history of the game (represented by an element of 𝑆∗),
returns an action 𝑎𝑖 ∈ 𝐴𝑖 .

Definition 2.2 (Strategy Profile). Let Π𝑖 represent the set of strate-

gies for agent 𝑖 . Then, we define the set of strategy profiles Π =>
𝑖∈Ω Π𝑖

Definition 2.3 (Primary Trace resulting from a Strategy Profile).
Given a strategy profile 𝜋 , the primary trace of 𝜋 is the unique trace

𝑡 that satisfies

(1) 𝑡 [0] = 𝜋 (𝜖)
(2) 𝑡 [𝑖] = 𝜋 (𝑡 [0], . . . 𝑡 [𝑖 − 1])

We denote this trace as 𝑡𝜋 .

Given a trace 𝑡 ∈ 𝑆𝜔 , define the winning set𝑊𝑡 = {𝑖 ∈ Ω : 𝑡 |=
𝐴𝑖 } to be the set of agents whose DFA goals are satisfied by a finite

prefix of the trace 𝑡 . The losing set is then defined as Ω/𝑊𝑡 .

Definition 2.4 (Nash Equilibrium). [5] Let 𝐺 be an iBG and 𝜋 =

⟨𝜋0, 𝜋1 . . . 𝜋𝑘−1⟩ be a strategy profile. We denote𝑊𝜋 = 𝑊𝑡𝜋 . The

profile 𝜋 is a Nash equilibrium if for every 𝑖 ∈ Ω/𝑊𝑡 we have that

given all strategy profiles of the form 𝜋 ′ = ⟨𝜋0, 𝜋1 . . . 𝜋 ′
𝑖
. . . 𝜋𝑘−1⟩,

for every 𝜋
′
𝑖
∈ Π𝑖 , it is the case that 𝑖 ∈ Ω/𝑊𝜋 ′ .

Definition 2.5 (𝑊 -NE Strategy Profile). Let 𝐺 be an iBG,𝑊 ⊆ Ω
a set of agents and 𝜋 a strategy profile in 𝐺 . We say 𝜋 is a𝑊 -NE
strategy profile if it is a Nash equilibria in which𝑊𝜋 =𝑊 .

3 COMPLEXITY
The main result of our work is the characterization of the following

problem:

Given an iBG 𝐺 and a set of agents𝑊 , does a𝑊 -NE strategy

profile exist?

as PSPACE-complete. In order to do so, we establish novel upper

and lower bounds for the problem. We only present a high level

overview here; a full write up can be found at [15].

3.1 Upper Bound
We characterize our notion of a Nash equilibrium as two separate

conditions. Thus, a strategy profile 𝜋 is a𝑊 -NE strategy profile in

an iBG 𝐺 iff it satisfies both the

(1) Primary-Trace Condition: The primary infinite trace 𝑡𝜋 de-

fined by 𝜋 satisfies the goals 𝐴 𝑗
precisely for 𝑗 ∈ 𝑊 . The

trace 𝑡𝜋 = 𝑥0, 𝑥1, . . . for 𝜋 is once again defined as follows

(a) 𝑥0 = 𝜀

(b) 𝑥𝑖+1 = 𝑥0, . . . , 𝑥𝑖 , 𝜋 (𝑥0, . . . , 𝑥𝑖 )
(2) 𝑗-Deviant-Trace Condition: Each 𝑗-deviant trace 𝑡 = 𝑦0, 𝑦1, . . .,

for 𝑗 ∉𝑊 , does not satisfy the goal 𝐴 𝑗
.

For 𝛼 ∈ Σ, we introduce the notation 𝛼 [− 𝑗] to refer to 𝛼 |Σ\Σ 𝑗

(that is, 𝛼 with Σ 𝑗 projected out). A trace 𝑡 = 𝑦0, 𝑦1, . . . is

𝑗-deviant if

(a) 𝑦0 = 𝜀

(b) 𝑦𝑖+1 = 𝑦0, . . . , 𝑦𝑖 , 𝛼 , where 𝛼 ∈ Σ and 𝛼 [− 𝑗] = 𝜋 (𝑦𝑖 ) [− 𝑗]
(c) 𝑡 is not the primary trace

In order to capture this property we create a deterministic top-down

Büchi tree automata 𝑇𝑊 , which recognizes all𝑊 -NE strategies in

𝐺 , and then test it for nonemptiness to see if a𝑊 -NE strategy exists.

Our approach allows us to separate reasoning about the 𝑗-Deviant-

Trace Condition from reasoning about the Primary-Trace Condition.

Specifically, we consider the 𝑗-Deviant-Trace Condition through

solving a series of safety games, and then test for both the Primary-

Trace Condition and the 𝑗-Deviant-Trace Condition by testing a

Büchi word automaton for nonemptiness, a problem which can

generally be done in NLOGSPACE [18]. Since our automaton is

exponential in size, we get

Theorem 3.1. The problem of deciding whether there exists a𝑊 -
NE strategy profile for an iBG 𝐺 and a set𝑊 ⊆ Ω of agents is in
PSPACE.

3.2 Lower Bound
The lower bound comes from a reduction from the PSPACE-complete

problem of DFA Intersection Emptiness (DFAIE). The DFAIE prob-

lem is as follows: Given𝑘 DFAs𝐴0 . . . 𝐴𝑘−1
with a common alphabet

Σ, decide whether
⋂

0≤𝑖≤𝑘−1𝐴
𝑖 ≠ ∅ [9]. We are able to incorporate

this in our formalism by applying a synchronization modification

to the goal DFAs in an iBG which takes away the temporal aspect

of our problem. Therefore,

Theorem 3.2. The problem of deciding whether there exists a
𝑊 -NE strategy profile for an iBG 𝐺 and a set𝑊 ⊆ Ω of agents is
PSPACE-hard.

Theorem 3.3. The problem of deciding whether there exists a
𝑊 -NE strategy profile for an iBG 𝐺 and a set𝑊 ⊆ Ω of agents is
PSPACE-complete.
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